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ABSTRACT

Switch failures can hamper access to client services, cause

link congestion and blackhole network traffic. In this study,

we examine the nature of switch failures in the datacenters

of a large commercial cloud provider through the lens of

survival theory. We study a cohort of over 180,000 switches

with a variety of hardware and software configurations and

find that datacenter switches have a 98% likelihood of func-

tioning uninterrupted for over 3 months since deployment

in production. However, there is significant heterogeneity

in switch survival rates with respect to their hardware and

software: the switches of one vendor are twice as likely to

fail compared to the others. We attribute the majority of

switch failures to hardware impairments and unplanned

power losses. We find that the in-house switch operating

system, SONiC, boosts the survival likelihood of switches in

datacenters by 1% by eliminating switch failures caused by

software bugs in vendor switch OSes.
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1 INTRODUCTION

Cloud providers support a large variety of applications with

strong performance and reliability guarantees. A key enabler

of reliable access to these applications is the design and

architecture of modern datacenters. Network switches that

form tiers of the clos-like datacenter topology are central

to the functionality and reliability of datacenters [12]. Their

failures can interrupt client services, increase the load on

other switches and congest datacenter links.

In this work, our goal is to estimate the expected time-to-

failure, or survival time, of datacenter switches and quantify

the factors that impact it negatively. We examine the root

causes of switch failures and propose ways to mitigate them.

Our study spans over 180,000 switches in datacenters across

130 geographical locations for a period of 3 months. We

collect a combination of signals from the control, data and

management plane of the switches to infer the time and

duration of failure events and augment these failure logs

with hardware and software characteristics of switches (§2).

The network evolves during our study as new switches get

added to datacenters and existing switches undergo proac-

tive maintenance reboots, making it challenging to estimate

the survival time of switches. Survival theory [7] provides a

framework to estimate the survival time from failure logs of

a continuously evolving network. Using the non-parametric

Kaplan-Meier [6] and semi-parametric Cox Proportional Haz-

ard [4] models, we identify the impact of switch characteris-

tics, like their hardware SKU and operating system (OS), on

the switch survival likelihood (§3). Based on this analysis,

our key findings are as follows:

• Our root-cause analysis shows that 32% of switch fail-

ures can be attributed to hardware faults and 27% to

unplanned power outages. These are the two leading

causes of switch failures in datacenters. The majority

of failed switches recover in less than 6 minutes (§2).

• Datacenter switches have a 2% chance of suffering a

failure within 3 months of being in production. There

is significant heterogeneity in the survival likelihood

of switches manufactured by the three major switch

vendors, with one vendor being twice as likely to fail

compared to the others (§3 and §4).

• 17% of switch failures occur due to software bugs in

vendor switch OSes. To mitigate their impact, the cloud

provider has developed the SONiC [9] switch OS. We

find that using the same underlying hardware, SONiC
switches have a higher survival likelihood compared

to vendor switch OSes. Moreover, this difference in

survival likelihood widens over time – at the end of

3 months, SONiC switches have 1% higher survival

likelihood than vendor switch OSes (§5), highlighting

the efficacy of deploying SONiC in datacenters.

Implications. Datacenter reliability is well-studied in re-

search and practice (§6). Our work complements previous

findings by performing a longitudinal study of switch fail-

ures in an evolving network – with new hardware being

provisioned daily. Additionally, our focus is to identify char-

acteristics of reliable switches, e.g., hardware vendors and
switch operating systems. To this end, our root cause analysis

shows that some switch vendors are more likely to run into

hardware bugs compared to others. Hardware bugs cannot
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be resolved from OS upgrades alone, making them harder

and time consuming to mitigate. Second, we estimate the

instantaneous rate of failure, or hazard rate, of switches and

find that switches from certain vendors are more likely to fail

compared to others. Thus, our analysis informs the purchase
of new vendor switches and for the ones already deployed,

it can inform the placement of data and services [3] to mini-

mize the impact of inevitable switch failures. We end with

two case studies of switch failures in cloud datacenters high-

lighting the process of isolating, root-causing and mitigating

switch failures in production networks (§7).

2 IDENTIFYING SWITCH FAILURES

We define a spontaneous and unplanned interruption in the

normal function of network switches as a failure. For this

study, we scan all datacenter switches (i.e., top-of-rack, leaf
and spine) every 6 hours to collect the output of the show
reload cause command-line interface (CLI) command. We

parse the output to identify the cause and timestamp of the

last reload of the switch.

While there are other ways of inferring switch reboots at

scale, we use the output of the reload cause command for two

reasons. First, this command is supported by all switch OSes

in our datacenters, allowing completemeasurement coverage.

Second, reboot signals that rely on syslogs and SNMP traps

are noisy in nature. For instance, coldStart traps [10] are

raised both when the switch reboots and when the SNMP

process restarts. Thus, we found that periodically querying

the switches to infer potential reloads provides the ground

truth for failure events.

In all, there are over 180,000 datacenter switches that were

periodically scanned. Due to the large number of switches,

each scan can take several hours to complete. Thus, we query

each switch once in 6 hours and log a reboot that occurred

in the time since the previous scan. A limitation of periodic

scanning is that our scans consider multiple reboots of a

device within 6 hours as a single reboot. The timestamped

collection of all switch reboots inferred from our scans is

our primary dataset (failure-dataset-main). We note that

due to the redundancy in the datacenter topology and failure

mitigation mechanisms like live VM migration, most switch

failures do not hamper client services.

We manually analyzed a subset of switch failures in-depth

using syslogs and signals from monitoring agents. These

events were chosen for manual analysis since they caused

significant disruption in services, making them higher prior-

ity than the others. We annotated failures in this subset with

their root causes and durations. This forms the supplemen-

tary dataset of our analysis (failure-dataset-supplement).

Overall, we analyze switch failures in the datacenters of a

large cloud provider from June 24
𝑡ℎ

to September 24
𝑡ℎ
, 2020.
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Figure 1: The duration of switch failures.

These switches are located across 130 datacenters globally,

consisting of over 180,000 ToR, leaf and spine switches. In the

3-month analysis period, we observed 4,681 switch failures.

2.1 Measuring failure durations

For a subset of switch failures, we estimated the duration

of the failure (failure-dataset-supplement) using reacha-

bility tests to the switch. Figure 1 shows the distribution of

durations of switch failures. Nearly 50% of failures lasted

for six minutes or lesser. A small number of failures lasted

for several hours, accounting for the isolation, removal and

replacement of the failed device.

2.2 Identifying failure root causes

Switch interruptions can occur due to planned maintenance

activities. For instance, replacement of faulty power supplies

and OS upgrades can cause switch outages during the main-

tenance time window. We differentiate planned maintenance

activities from unplanned failure events in our analysis.

To differentiate failures from planned maintenance, we

analyze the maintenance logs of all switches in the data-

center. These logs contain plans for maintenance activities

scheduled for the switch. If a maintenance activity coincides

with a failure event, we consider that event as planned. We

also augment the maintenance logs with authentication, au-

thorization and accounting (AAA) agent logs on switches [1].

TheAAA agent keeps a timestamped log of all CLI commands

issued on the switch by authorized users. Interruptions that

follow within 30 minutes of the execution of a reload com-

mand on the switch CLI are considered planned events and

are excluded from our analysis. We allow a maximum of 30

minutes to elapse between the AAA log and the planned

switch outage events to account for the time lag in the col-

lection of AAA logs to the centralized database. For the rest

of this study, we focus only on unplanned switch failures.

In addition to the broad categorization of planned and

unplanned events, we conduct a detailed root cause anal-

ysis (RCA) for a subset of 331 failures (failure-dataset-

supplement). We manually analyze the syslogs of the failed
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switches in cooperation with the support staff of switch

vendors and assign each failure into a root cause bucket.

Hardware vs. software failures. Two of the root cause

buckets we define are hardware and software failures. Both
hardware and software failures can manifest in the form

of process crash logs and stack traces on the faulty switch,

making it hard to differentiate between them in practice. Ad-

ditionally, even when the failure logs clarify that the cause

is a hardware fault, there can be ambiguity about the real

source of the error. For example, parity errors encountered

on switches [2] can be caused by faulty hardware, bit flips

etc., but they can be mitigated in the switch software. There-

fore, it is unclear if these faults should be attributed to the

hardware or the software. To resolve the categorization ambi-

guity, we take input from the switch manufacturer’s support

team – if the manufacturer provides a software fix for the

failure, we categorize the fault as a software failure. Cat-

egorization of failures software vs. hardware faults helps

the cloud provider evaluate which vendors are preferable.

Software faults can be resolved by applying patches issued

by the vendors but hardware faults necessitate replacement

of faulty devices. Thus, devices with fewer hardware faults

are preferable for deployment. For fair comparison between

vendors, we allow the vendors’ resolution of the failure to

dictate the categorization of the root-cause.

Figure 2 shows the percentage of failures in each root

cause bucket. We find that approximately 32% of switch fail-

ures are caused by hardware issues. Unplanned power loss

is responsible for 28% of failures. In some cases, it is hard

to conduct the post-mortem root cause analysis due to the

absence of sufficient clues in the syslogs of the failed switch.

In the absense of sufficient evidence, the failed switch is sent

to the manufacturer for a detailed RCA, and we classify the

failure in the “pending root cause” category. If, despite the

efforts of the cloud provider and the switch manufacturer,

the root cause cannot be found, we classify the failure cat-

egory as “unknown”. In 5% of the cases, the fault is found

in the connection between the switch and servers (“server

related”). Switches with unknown failure causes or ones that

cannot be mitigated through a software patch undergo a

process of return merchandise authorization (RMA). As part

of the RMA, the failed switch is returned to the vendor and

is replaced with a new one (more in §7).

3 ESTIMATING SWITCH SURVIVAL TIME

Our goal is to estimate the expected time-to-failure, or sur-

vival time, of datacenter switches and quantify the factors

that affect it. This is hard as datacenter networks continu-

ously evolve: new switches are deployed, switches reboot

during maintenance and suffer spontaneous failures. A naive

estimate of time-to-failure using switch counts per time win-

dow fails to capture two features of the estimation task:

hardware
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Figure 2: Root causes of switch failures.

1.Not all switch interruptions are failures: Maintenance

reboots of switches pre-empt our observation of their time-to-

failure. The naive estimator of time-to-failure could handle

maintenance reboots in one of three possible ways: (1) In

estimating time-to-failure, the naive estimator can ignore

all devices that undergo maintenance reboots during the

study. This causes several data points to get discarded from

the analysis since maintenance reboots are common in data-

centers. (2) The naive estimator can assume that there is no

interruption in the switch lifetime even if it rebooted due to

maintenance. This risks overestimation of the time-to-failure

of switches. (3) Finally, by considering planned reboots as

failures, the naive estimator risks underestimating the time-

to-failure of switches. Thus, these strategies are inadequate

in addressing preempted observation of switch lifetimes.

2. New switches get deployed during the analysis: Dur-

ing the analysis period, new switches get deployed in the

datacenters and our observation of their lifetime starts once

they get deployed. The naive estimator must account for the

limited view into their time-to-failure.

Survival analysis [7] provides a framework for analyzing

failure events that incorporates these partial observations

of switch survival times. Traditionally used in biostatistics

to compute the survival likelihoods of patients in different

treatment groups, we use survival analysis to estimate time-

to-failure of switches and quantify the impact of switch char-

acteristics on their survival likelihood.

Survival dataset of switches. We use failure-dataset-

main (Section 2) and convert it to the traditional survival

analysis form. Each switch in the study cohort has a unique

ID and status field. The status field is the key outcome vari-

able of the study, it is 1 if the switch has failed in the study

period and 0 otherwise. The status is 0 if the switch did not

fail in the study period. Since, the failure was not observed in
the study, this data point is said to be censored from the anal-

ysis. Censoring is an important concept in survival analysis

which addresses cases where we have partial observations of

switches’ lifetimes. The other important field in the survival

dataset is the observation time of a switch: the duration for
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Figure 3: We use survival theory to estimate the time-to-

failure of switches. Partial observations of time-to-failure

due to maintenance reboots at 𝑡2 are considered censored.
Censored data points are represented with status = 0 and ob-

servation time of 𝑡2 in the survival dataset.

Switch ID Status (d) Observed Duration (t) Vendor Type

Switch-1 1 100 minutes Vendor-1

Switch-2 0 200 minutes Vendor-2

.. .. .. ..

Table 1: Example rows from the survival dataset of switches.

Switch-1 fails after 100minutes of observation and Switch-2

gets rebooted after 200 minutes of observation (censored).

which the switch was observed in the study. The observa-

tion time of a failed switch stops when it fails. If the switch

gets censored at the end of the study, its observation period

stops at the end of the study (Figure 3). Along with switch

ID, status and observation time, the survival dataset includes

explanatory features of the switch: hardware vendor, OS

version etc. (shown in Table 1).

Incorporating maintenance outages. We account for

maintenance outages using the concept of right censoring
in survival theory. Switch restarts as part of routine main-

tenance are considered censored observations (𝑠𝑡𝑎𝑡𝑢𝑠 = 0)

with the observation period ending at the restart time. When

the switch comes back up after the maintenance, it is in-

cluded in the cohort as a new device with a different switch

ID and its observation period starts when it is up and run-

ning again. In this manner, we do not discard censored data

points in our analysis.

Incorporating repeated switch outages. In traditional

survival analysis, the event of interest can occur to the sub-

jects once during the study (e.g., death, remission from can-

cer). However, switches recover from failures either on their

own or following a fix – upgrade of the power supply or fan,

installation of an OS patch etc.. Recovered switches can fail

again. To incorporate repeated failure events, once a switch

recovers, we assign it a unique ID, different from the original

switch, and begin its observation period when it has recov-

ered from the failure. Of the switches that failed at least once

in our analysis, the 98
𝑡ℎ

percentile failure count per switch

during the study duration is 34. We found that 8 switches

were outliers in terms of their failure counts and excluded

the outliers from the analysis to not bias the overall survival

rates towards these devices.

0.95

0.96

0.97

0.98

0.99

1.00

0 20 40 60 80
Time (days)

S
ur

vi
va

l P
ro

ba
bi

lit
y

Figure 4: Kaplan Meier survival estimate of datacenter

switches, shaded region shows 95% confidence intervals.

3.1 Kaplan Meier survival estimator

In this section we use the survival dataset of switch failures

to estimate switch survival time. Let𝑇 be the time for which a

switch is uninterrupted in its operation, or the survival time.

Survival time is a random variable and the survival function,

𝑆 (𝑡), of a cohort of switches measures the probability that

𝑇 > 𝑡 . The Kaplan-Meier estimator [6] is a non-parametric

statistic used to estimate the survival function,
ˆ𝑆 (𝑡):

ˆ𝑆 (𝑡) =
∏
𝑖:𝑡𝑖 ≤𝑡

(
1 − 𝑑𝑖

𝑛𝑖

)
(1)

where 𝑑𝑖 is the number of switch failures that occurred

at time 𝑡𝑖 and 𝑛𝑖 is the size of the risk set at 𝑡𝑖 . The risk

set consists of switches in the study cohort that have not

failed up to time 𝑡𝑖 . Censored observations change the size

of the risk set, 𝑛𝑖 , avoiding the pitfalls of the naive estimator.

Since the number of failures (𝑑𝑖 ) increase with time,
ˆ𝑆 (𝑡)

is a non-decreasing function. Figure 4 shows the Kaplan

Meier survival curve of switches in our datacenter. At the

start of the study, the survival probability is 100% since no

failures have occurred. As switch failures are observed, the

survival probability drops to 98.5%. This shows that datacen-

ter switches have a 98.5% chance of staying uninterrupted

for at least 3 months since deployment in production.

4 PROPORTIONAL HAZARD MODEL

To decompose the contributions of known switch charac-

teristics on the survival time of switches, we use the Cox

Proportional Hazards (PH) model [4]. The Cox PH model

extends the Kaplan-Meier estimator by quantifying the im-

pact of switch characteristics on survival time. The model

estimates the hazard rate – the instantaneous failure rate of

switches, as a function of observation time and explanatory

variables of the switch. The hazard rate is modeled as:

ℎ(𝑡) = ℎ0 (𝑡)𝑒 (𝑏1𝑥1+𝑏2𝑥2+..) (2)
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Figure 5: KaplanMeier survival curves for switches belong-

ing to three main switch vendors. vendor-3 has a lower sur-

vival likelihood than vendor-1 and vendor-2.

where ℎ0 (𝑡) is the base hazard rate, 𝑥𝑖 are the values of

the switch characteristics (or covariates) and 𝑏𝑖s are the coef-

ficients of the covariates. The base hazard rate is the part of

the estimator that varies with time. The exponential only de-

pends on switch characteristics. These coefficients measure

the impact of a covariate on the hazard rate of the popula-

tion. We use a categorical covariate to represent the switch

vendor and its corresponding coefficient in the Cox model

will describe the impact of switch vendor on failure rate.

The quantity 𝑒𝑏𝑖 , called the hazard ratio of covariate 𝑥𝑖 ,
compares the increased hazard to switches due to 𝑥𝑖 . 𝑏𝑖 >

0, equivalently the hazard ratio 𝑒𝑏𝑖 > 1, implies that an

increase in the value of 𝑥𝑖 leads to an increased hazard to

the population. For categorical variables, the hazard ratio is

computed in reference to a base population. For instance, the
hazard ratio of a switch vendor is computed using another

vendor’s switches as the base population.

4.1 Impact of hardware on resilience

The datacenters we analyze have switches from 3 major

switchmanufacturers.We anonymize their names to vendor-

1, vendor-2 and vendor-3. In this section we compare the

reliability of switches of the three vendors using failure-

dataset-main (§2). We compute the Kaplan Meier estimate

for the three switch vendors (Figure 5) and find that while

two vendors have similar survival likelihoods, vendor-2 is

more likely to fail than the others. The trained PH hazard

model quantifies this using the hazard ratio and finds that

the hazard rate of vendor-2’s switches is 2X the hazard rate

of vendor-3 with a highly significant p-value < 1𝑒 − 10.

Since we conducted manual root cause analysis for switch

failures in failure-dataset-supplement (§2), we categorize

root causes of failures for each of the three vendors sepa-

rately. Figure 6 shows the percentage of failures in each root

cause category for the 3 vendors. We find that nearly 70%

of Vendor-3’s failures are hardware issues. Hardware is-

sues are harder to resolve since software upgrades and fast

reloads do not fix the problem.

hardware

server related

unplanned power loss

software

pending root cause

planned maintenance

0 10 20 30 40 50 60 70
Percent failures

R
oo

t C
au

se

Vendor−1 Vendor−2 Vendor−3

Figure 6:Root causes of failures for different hardware ven-

dors. 70% of all failures in the switches manufactured by

vendor-3 were hardware issues.

5 REDUCING THE HAZARD

Across all vendors, 17% of failures were caused by software

bugs (Figure 2). To reduce these failures, the cloud provider

has been actively developing an in-house switch operating

system, SONiC [9]. During our study period, nearly 75% of

the aggregation switches in the cloud datacenters were run-

ning SONiC on existing vendor-1 hardware. This gave us

a unique opportunity to compare the resilience of SONiC

and vendor switch OSes. These switches use the same under-

lying hardware manufactured by Vendor-1 with the only

difference being the switch OS (SONiC vs. Vendor-1’s OS).

We show the Kaplan Meier survival curves of the two types

of switches (Figure 7) and find that SONiC switches are sig-

nificantly more reliable despite having the same underlying

hardware. With time, the gap in reliability widens and at the

end of 3 months, the survival likelihood of SONiC switches

is 1% higher than that of non-SONiC switches.

To quantify the difference in survival time and hazard rate

of switches running SONiC vs. the vendor OS, we train a

Cox PH model on aggregation switches manufactured by

Vendor-1. The sub-grouping helps us focus on the key ques-

tion by removing other characteristics that could interact

with the effect of switch OS on hazard rate. The trained

Cox PH model has a coefficient of −7.2 for SONiC aggre-

gation switches in comparison with non-SONiC aggrega-

tion switches. Consequently, the hazard ratio is 0.0007 with

a highly significant p-value < 2𝑒 − 16. The Concordance

index (CI) of the Cox PH model is a generalization of the

Receiver operating characteristic (ROC) curve that takes into

account censored data points [7]. The CI of the Cox PH

model we learn is 0.9 implying that with high confidence,

SONiC switches have a significantly lower likelihood to fail

compared to non-SONiC switches in our datacenters.

Our analysis shows that replacing vendor switch OSes

with SONiC has been beneficial in improving the resilience

of datacenter switches. We attribute the resilience of SONiC

to the rapid develop-test-deploy cycle made possible by
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Figure 7: KM survival curves for SONiC and vendor switch

OS running on the same switch hardware.

the in-house development of the software. Indeed, vendor

software updates and patches are rolled out over longer

timescales (e.g., several months). This leads to known issues

re-occurring on devices that have not yet been patched with

the vendor-supplied fixes. In contrast, SONiC failures are

root-caused and fixed over short timescales due to in-house

expertise and development teams.

6 RELATEDWORK

The work of Gill et. al. is closely related to our study. In

their work, authors studied failure of devices and links in

datacenters [5]. However, their analysis does not consider

the evolution of failure rate with time and the impact of

censored data points when new devices get added or mainte-

nance reboots occur. As in [5], we also find that datacenter

switches are highly reliable, but, we perform a longitudinal
study of failure rates to establish the relationship between

failure and device lifetime in production. While [5] focusses

on a broader variety of device failures (e.g., load balancers),

they do not root cause the failures and compare the impact of

switch OS and hardware on failure probabilities. Recently, re-

searchers have measured the impact of different components

(e.g., devices, configurations etc.) on the overall datacenter

network reliability at Facebook [8]. In their work, authors

have discussed mean time to failure (MTTF) for edge nodes

and links in the WAN backbone. Our focus is on identifying

characteristics that impact the survivability of datacenter
switches for informing hardware purchase decisions. In their

work [11], authors studied the failure of middleboxes in dat-

acenters and analyzed the causes of their low reliability. Our

goal is to identify hardware and software configurations that

work well and inform future purchase and deployment de-

cisions. Finally, failure likelihoods change with time since

deployment in production and our analysis captures these

changes using survival likelihood estimates.

7 DISCUSSION

Rapid detection and mitigation of switch failures is crucial

to datacenter networks’ incident response. When a switch

fails in production datacenters, a team of engineers isolate

the device and migrate traffic away from it. If the root cause

of the failure is a known bug in the switch OS, the switch OS

is upgraded and the switch re-joins the network. If the root

cause is a known hardware issue, an operations team finds

a replacement for the failed switch, either in the datacenter

inventory or from the switch vendor. If the root cause is

not clear, the switch is sent back to the vendor for in-depth

analysis. As the diagnosis can take weeks, the failed switch

is replaced. We illustrate this process with two case studies

on switch failures that occurred in our datacenters.

The case of uncorrectable error correcting codes (ECC)

Switches of vendor-1 began exhibiting a problem signature

where they spontaneously rebooted in production and the

reload-cause after reboot was marked unknown. The syslogs
did not shed light on the root cause and the devices had to

be sent to the vendor for analysis. The vendor found that the

reloads happened due to an uncorrectable ECC error on the

switch. This bug impacted several CPU models and it was

found that the reloads were unpredictable. vendor-1 issued

a patched BIOS image which updated the memory controller

settings. The new BIOS was rolled out incrementally on the

impacted switches as part of the mitigation process.

The case of CPLD failure. In late 2019, several vendor-3

manufactured switches exhibited a problem signature where

all switch ports and linecards went down and were not being

detected by the switch OS. The in-house analysis of switch

logs did not improve our understanding of the problem and

the failing devices were returned to the manufacturer for

further analysis. After a few weeks, the manufacturer found

that a complex programmable logic device (CPLD) was faulty.

For a fraction of such devices in the network, an upgrade

of the CPLD firmware and fast reboot was sufficient to fix

the problem. A fast reboot disrupts the switch data plane for

less than 30 seconds, causing minimal impact to client traffic.

Remaining vendor-3 switches susceptible to the CPLD bug

had to undergo return material authorization (RMA).

8 CONCLUSION

In this work we analyzed switch failures in datacenters from

the lens of survival theory. We estimate the survival times

and hazard rates of switches in the datacenters of a large

commercial cloud provider. Our analysis shows that the two

leading causes of switch failures in datacenters are hardware

faults and unplanned power loss. Most failures are resolved

quickly with the median duration of switch failures being six

minutes. We find that one of the major vendor’s switches are

2X more likely to fail than others. Finally, we show that by

developing an in-house switch OS, SONiC, the cloud provider

we analyze has significantly improved the resilience to failure

of datacenter switches.
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