
TACCL: Guiding Collective Algorithm Synthesis using Communication Sketches

Aashaka Shah*

University of Texas at Austin
Vijay Chidambaram

University of Texas at Austin and VMware Research

Meghan Cowan
Microsoft Research

Saeed Maleki
Microsoft Research

Madan Musuvathi
Microsoft Research

Todd Mytkowicz
Microsoft Research

Jacob Nelson
Microsoft Research

Olli Saarikivi
Microsoft Research

Rachee Singh
Microsoft and Cornell University

Abstract
Machine learning models are increasingly being trained
across multiple GPUs and servers. In this setting, data is
transferred between GPUs using communication collectives
such as ALLTOALL and ALLREDUCE, which can become
a significant bottleneck in training large models. Thus, it is
important to use efficient algorithms for collective commu-
nication. We develop TACCL, a tool that enables algorithm
designers to guide a synthesizer into automatically generating
algorithms for a given hardware configuration and communi-
cation collective. TACCL uses a novel communication sketch
abstraction to get crucial information from the designer to
significantly reduce the state space and guide the synthesizer
towards better algorithms. TACCL also uses a novel encod-
ing of the problem that allows it to scale beyond single-node
topologies. We use TACCL to synthesize algorithms for three
collectives and two hardware topologies: DGX-2 and NDv2.
We demonstrate that the algorithms synthesized by TACCL
outperform the Nvidia Collective Communication Library
(NCCL) by up to 6.7×. We also show that TACCL can speed
up end-to-end training of Transformer-XL and BERT models
by 11%–2.3× for different batch sizes.

1 Introduction

Machine-learning models have been dramatically increas-
ing in size over the past few years. For example, the lan-
guage model MT-NLG has 530 billion parameters [31] and
the Switch-C mixture-of-experts model has 1.6 trillion pa-
rameters [18]. Model sizes are expected to further grow to
increase model accuracy and perform more complex tasks.
These models are too large for the resources of a single GPU
and have to be distributed across multiple servers, each with
several GPUs, using different parallelism strategies like data,
model, pipeline, and expert parallelism [18, 27, 43] for train-
ing and inference. Intermediate data and parameters of the
model at each GPU are accumulated, shuffled, and transferred
over the network between other GPUs for distributed machine
learning, depending on the type of parallelism strategy used.

*Work was partially done during an internship at Microsoft Research.

The inter-GPU communication bottleneck. Recent work
has shown that GPU idle time spent waiting for network com-
munication can be significant in practice [2, 19, 26, 28]. For
instance, BERT [15] and DeepLight [14] spent 11% and 63%
of time, respectively, with GPUs idle on a 100 Gbps Ethernet
cluster of P100 GPUs [2]. Newer generations of faster GPUs
will only make this problem worse. This inefficient use of
GPUs shows that there is significant model performance to
be gained by optimizing inter-GPU communication.

Collective communication primitives and algorithms. Ef-
ficient communication between GPUs is the key to enabling
fast distributed ML training and inference. Modern GPU
systems use message passing interface (MPI)-based collec-
tive communication primitives, such as ALLREDUCE, ALL-
GATHER, and ALLTOALL to perform inter-GPU communica-
tion (Figure 2 in §2). Collective algorithms implement collec-
tive communication primitives. They route data along various
paths in the network and schedule the necessary computation
(e.g., a sum in ALLREDUCE) while optimizing for latency
and bandwidth characteristics of each link in the network. For
example, a common collective algorithm for ALLGATHER
(all GPUs gather data from all GPUs) is a Ring algorithm,
in which all GPUs are logically arranged in a ring and each
GPU receives data from its predecessor in the ring and sends
a previously received data to its successor. Inefficiencies in
collective communication algorithms can cause poor network
utilization, causing GPUs to remain idle until inter-GPU trans-
fers complete [53], and thus reducing the overall efficiency of
distributed training and inference.

Challenges in designing GPU communication algorithms.
Designing algorithms for efficient collective communication
on GPU topologies is challenging. First, these algorithms have
to strike the right balance between latency and bandwidth op-
timality. For instance, the commonly used Ring algorithm for
ALLREDUCE is not efficient for small input sizes as it has a
high latency. Second, GPU communication algorithms have
to manage the heterogeneity of connectivity in the underlying
topology. For instance, GPUs within a machine (also referred
to as a node) are usually connected using fast NVLinks [38]
(up to 300 GBps aggregate bidirectional bandwidth per GPU)
while GPUs across nodes are connected using slow Infini-

Communication Sketch

Profiled Topology

Target Collective

Algorithm
ImplementationRouting Heuristic

Ordering
Contiguity and

Exact Scheduling

Synthesizer

Hyperparameters

Backend

Figure 1: TACCL’s novel synthesizer takes as input a communication sketch, profiled topology, and target collective along
with synthesizer hyperparameters to generate an algorithm for the collective. The synthesized algorithm is implemented on the
hardware cluster using TACCL’s backend.

Band [36] links (12.5-25 GBps per NIC). Moreover, these
topologies vary significantly between vendors. And finally,
searching over the entire space of routing and scheduling algo-
rithms to find optimal ones for communication collectives is
computationally prohibitive. In fact, previous approaches that
synthesize collective communication algorithms are limited
to single-node topologies [9] or 8 GPUs at most [51].

Managing scale for automated algorithm design. Our
goal is to automatically obtain efficient algorithms for a given
hardware configuration and communication collective. We
encode the problem of finding optimal algorithms for com-
munication collectives into a mixed integer linear program
(MILP) with the goal of minimizing the overall execution
time. Unfortunately, this problem is NP-hard; state-of-the-
art commercial solvers like Gurobi [20] can spend several
days exploring the search space without finding an optimal
algorithm. In this work, we propose a human-in-the-loop ap-
proach that incorporates high-level inputs of an algorithm
designer to efficiently synthesize collective communication
algorithms for heterogeneous GPU topologies. We argue that
it is easy for algorithm designers to provide a few simple
inputs that constrain the search space of algorithms which
allows synthesis engines to scale to large GPU topologies.

Communication sketches as user input. It is crucial that
the input required from algorithm designers is simple and
intuitive. For this, we introduce a new abstraction: communi-
cation sketches (§3). Inspired by the technique of program
sketching [47] from program synthesis, in which developers
supply a partially specified program with holes that capture
the high level structure of the desired program, communica-
tion sketches allow algorithm designers to provide high-level
intuitions that constrain the search space of algorithms. A syn-
thesis engine fills in the remaining details such as routing and
scheduling of the final collective communication algorithm,
analogous to how a constraint solver in program synthesis
searches the reduced space to fill the holes.

Our solution. We develop TACCL (Topology Aware Col-
lective Communication Library), a system that synthesizes
communication algorithms for a given topology and a tar-
get collective communication primitive. Algorithm designers
can use communication sketches to guide TACCL into syn-
thesizing efficient algorithms for a large range of hardware

topologies. We develop a novel encoding of the problem in
TACCL’s synthesizer to scale beyond single-node topologies.
Figure 1 shows an overview of TACCL’s design.

Synthesizing algorithms from communication sketches.
TACCL’s synthesis approach builds on the solver based syn-
thesis approach in SCCL [9], where the space of possible algo-
rithms is directly encoded in a satisfiability modulo-theories
(SMT) solver. SCCL does not scale to the sizes of clusters
used by modern machine learning workloads. We present a
novel mixed integer linear programming (MILP) encoding
of the collective algorithm synthesis problem that improves
scalability by first solving a bandwidth-relaxed version of the
problem to decide on routing, followed by ordering heuris-
tics and a second bandwidth-constrained problem to find a
valid scheduling (§5). In addition to improving scalability,
TACCL’s MILP formulation allows modeling of heteroge-
neous links with different per-message overhead characteris-
tics. This overcomes the limitation in SCCL [9] that prevents
it from faithfully targeting distributed GPU clusters.

Results. We use TACCL to synthesize efficient algorithms
for a range of collectives like ALLGATHER, ALLTOALL, and
ALLREDUCE, and for different hardware backends like Azure
NDv2 [6] and Nvidia DGX-2 [35] (§7). We compare TACCL
to the state-of-the-art Nvidia Collective Communication Li-
brary (NCCL). TACCL synthesized an ALLGATHER algo-
rithm for two Nvidia DGX-2 nodes (32 GPUs). This algorithm
is up-to 6.7× faster than NCCL for small-to-moderate input
sizes. For large input sizes on the same hardware, TACCL
synthesized a different ALLGATHER algorithm that nearly
saturates the inter-node bandwidth and is up-to 25% faster
than NCCL. TACCL synthesized an ALLTOALL algorithm
for two Azure NDv2 nodes (16 GPUs) that is up-to 66%
faster than NCCL. Finally, we replaced NCCL with TACCL
using only a two-line code change in PyTorch and found that
TACCL achieves a speed-up of 17% in end-to-end training of
a mixture-of-experts model that uses ALLTOALL and ALLRE-
DUCE, and a speed-up of 11% - 2× in end-to-end training
of a Transformer-XL model distributed over 16 GPUs for
varying batch sizes. TACCL’s codebase is open-source and is
actively in use by researchers at universities and practitioners
at Microsoft for Azure’s GPU virtual machines. 1

1https://github.com/microsoft/taccl

https://github.com/microsoft/taccl

2 Background and Motivation

Collective communication in distributed ML workloads.
Multi-GPU ML workloads typically communicate using MPI-
style collectives like ALLGATHER, ALLTOALL, and ALLRE-
DUCE shown in Figure 2. These primitives capture the applica-
tion’s intent behind the communication, thus allowing collec-
tive communication libraries to optimize for specific hardware
configurations. In ALLGATHER, every GPU receives the data
buffers of all other GPUs (left diagram in Figure 2). In ALL-
TOALL, every GPU receives different parts, or chunks, of the
data buffers present on all GPUs. This effectively transposes
the data chunk from buffer index to GPU index as can be
seen in center diagram in Figure 2. In ALLREDUCE, every
GPU ends up with a data buffer that has the results of per-
forming a point-wise computation (e.g., sum in right diagram
in Figure 2) over the same data index of all GPUs.

The parallelism strategy for the distributed ML workload
determines which collective communication primitive is used.
Data parallelism and some tensor model parallelisms [43]
make use of the ALLREDUCE collective to aggregate gradi-
ents and intermediate data respectively from multiple GPUs.
Expert parallelism [18, 27] and common deep learning rec-
ommendation models (DLRM) [32] make use of the ALL-
TOALL collective to shuffle intermediate data between experts
and embedding lookup data between GPUs respectively. DL-
RMs [32] also make use of the ALLGATHER collective and
another REDUCESCATTER collective to perform embedding
lookups from embedding tables sharded over multiple GPUs.
Existing approaches to collective algorithms. Collective
algorithms must be designed considering the target input sizes
and the heterogeneity of the target topology. However, most
collective communication libraries used for distributed ML
today, including the state-of-the-art NCCL, use pre-defined
templates of collective algorithms superimposed onto a tar-
get topology. For example, for collectives like ALLGATHER
and REDUCESCATTER, NCCL identifies rings in the target
topology and uses the Ring algorithm. For n GPUs, this algo-
rithm requires n−1 link transfer steps per data chunk and is
not ideal for smaller data sizes where link transfer latencies
dominate. Further, this algorithm treats the slow inter-node
and fast intra-node links similarly, scheduling equal number
of data transfers across both. The communication is thus bot-
tlenecked on the slower inter-node links, when it could have
benefitted by sending more node-local data (i.e. data of GPUs
local to the node) over the faster intra-node links instead.

For the ALLTOALL collective, NCCL implements the col-
lective algorithm as peer-to-peer data transfers between all
pairs of GPUs. This algorithm is topology-agnostic and often
inefficient. For the ALLREDUCE collective, NCCL chooses
between two algorithms — Double-Binary-Tree [34] and
Ring. This decision is made according to the communica-
tion input size and number of nodes, but might not be most
accurate, as it is based on hardcoded latency and bandwidth

profiling done previously by Nvidia on their machines.

Designing efficient collective algorithms requires careful
analysis of the topology and its performance with different
buffer sizes. Recent work [9, 51] has shown that synthesis
is a promising approach for generating collective algorithms
for different topologies and to achieve bandwidth and latency
optimality. However, scaling these approaches to multi-node
(i.e. multi-machine) distributed GPU topologies has been a
challenge. We measured the synthesis time for ALLGATHER
and ALLTOALL collectives on topologies of two Azure NDv2
nodes and two Nvidia DGX2 nodes (Figure 5) using SCCL [9,
30]. We modified the codebase to include both topologies
and attempted to synthesize the collectives with a 24-hour
time limit set for each synthesis query. Given a 24-hour time
limit, SCCL’s pareto-optimal solver strategy did not finish
synthesis for any combination of collective and topology. The
only algorithm that SCCL could synthesize within the time
limit was a latency optimal algorithm for ALLGATHER on
two NDv2 nodes.

Low-effort inputs from algorithm designers. The search
space of possible algorithms to implement a collective is
intractably large and cannot be explored via brute-force. De-
ciding whether or not to route data chunks from n GPUs over
l links in a topology has O(2n×l) combinations. As we scale
to multi-node topologies, n as well as l will also scale, increas-
ing the exponent quadratically. The search space explodes
further if we consider the problem of ordering data sends at
each link along with deciding routing for the data. We ar-
gue that high-level inputs from a human algorithm designer
help reduce the search space to make algorithm synthesis
more tractable. In the most extreme case, the designer would
hand-write the entire algorithm. However, handcrafting data
routing and scheduling over links to implement a collective
is complex and requires many design choices. Instead, de-
signers only provide input in the form of a communication
sketch around which TACCL synthesizes an algorithm. Our
goal is to ensure that providing inputs is a low-effort activ-
ity, but can discard large parts of the search space to achieve
improvements in running-time of the synthesis engine.

Synthesis technique. TACCL synthesizes a collective al-
gorithm by deciding the route that each data chunk in the
collective should take in the topology as well as the ordering
of chunks at every link. Even with communication sketches
which reduces the search space for the synthesizer, this deci-
sion problem is NP-hard and the complexity increases expo-
nentially with number of GPUs. To make the problem more
tractable, we first relax the synthesis problem to solve just
the routing of all data chunks and then heuristically order
chunks sent over the same links according to bandwidth con-
straints. TACCL’s synthesizer design along with communi-
cation sketches help TACCL synthesize efficient collectives
for multi-node topologies.

0 1 2 3

0 1 2 3

(i) AllGather (ii) AllToAll (iii) AllReduce (sum)

= + + +()
0 1 2 3 0 1 2 3 0 1 2 3

Figure 2: The initial and final data buffers on four GPUs participating in different collectives.

3 Communication Sketches

This paper proposes a new form of sketching [47] as an ef-
fective tool for users to communicate interesting aspects of
collective communication algorithms to synthesis backends.
Sketching approaches must strike a balance between allow-
ing users to omit implementation details while still providing
enough direction for the synthesis to scale. In our experience,
routing is an aspect of collective communication that we often
have intuitions about, while reasoning about scheduling tends
to be tedious and better left to synthesis. Moreover, proper-
ties about scheduling are routing dependent since the order
of operations is only relevant when routes intersect, which
makes them harder to express. Meanwhile, interesting proper-
ties about routing are expressible globally, e.g., “never send
over the InfiniBand NIC from this GPU”. Therefore, we ask
the algorithm designer (user) for four low-effort inputs as a
part of the communication sketch:
• Specify the logical topology as a subset of the actual

physical topology that the algorithm will operate on. This
constrains the routes chosen by the communication algo-
rithm and alleviates over-subscription of low-bandwidth
links. For example, the outgoing links of all but one GPU
can be removed in the logical topology to force all data
going to remote GPUs to be relayed through one GPU.

• The logical topology abstracts away switches (e.g.,
NVSwitches, IBSwitches) in the GPU network. Users can
annotate switches in the topology for the synthesizer to
use certain switch-hyperedge policies, enabling it to apply
synthesis policies that help algorithms avoid contention.

• Provide algorithm symmetry based on the symmetries in
the topology and the collective.

• Specify the expected input size of the data, which is used
as a part of the synthesis engine’s built-in cost model.

We explain all parts of the communication sketch and provide
an example sketch written for TACCL in Appendix A.

3.1 Logical Topology

The core of TACCL’s communication sketch is a logical
topology consisting of a subset of the physical topology af-
ter excluding links that the user prefers TACCL to avoid. A
logical topology has as many nodes as the physical topology
and inherits the cost model produced by TACCL’s profiler

for the physical topology. Logical topologies omit NICs and
switches and use switch-hyperedges (Section 3.2), abstracting
them away into links between GPUs. The reason is two-fold:
TACCL runtime is embedded in NCCL runtime and NCCL
has no direct control over NIC or switch use, and it allows
TACCL to reason over a smaller graph thus enhancing scala-
bility. Section 3.2 discusses implications of this abstraction.

Example 3.1 (Sketching inside an NDv2). Consider the phys-
ical topology of an Azure NDv2, given by the union of Fig-
ure 5a and Figure 5b. While NCCL is able to communicate
over both the NVLink and PCIe connections, the bandwidth
offered by the NVLinks is much higher than that of PCIe,
and thus it is reasonable to set the logical topology to just the
NVLink subgraph in Figure 5a.

Example 3.2 (Distributed sketching for NDv2 clusters). It is
essential to use PCIe connectivity for distributed collective
communication with multiple NDv2 systems since the NIC
is connected to GPUs over PCIe (Figure 5b). Due to lack of
GPUDirect RDMA [1] on these systems, all communication
over PCIe must pass through host memory. Therefore, care
must be taken in choosing which links to use, as the PCIe
links between PCIe switches and the CPU are oversubscribed.
Obtaining maximum throughput communication requires a
logical topology that avoids conflicting flows on the oversub-
scribed PCIe links. To build a logical topology for a cluster of
NDv2 systems, a pair of receiver and sender GPUs is selected
for each NDv2 such that the selected GPUs and the NIC are
connected to the same PCIe switch.

3.2 Switch-Hyperedges
In a switched fabric with full bisectional-bandwidth, like the
NVSwitch or IBSwitch fabrics in DGX-2 and NDv2 systems,
nodes can simultaneously communicate at the full bandwidth
of their ingress or egress links. However, as the number of
connections through a switch, originating from a single GPU
or NIC increases, the resulting queuing delays increase the
latency. Figure 4 plots the accumulated ingress/egress band-
width of exchanging varying volume of data (up-to 200-400
MB) for different number of connections over NVSwitches in
a DGX2 node (left) and over IBSwitches among four DGX2
nodes (right). In both cases, the bandwidth drops as the num-
ber of connections increases despite the volume of data re-

(a) Physical topology with a switch.

GPU0 GPU1

GPU2

Switch

GPU0 GPU1

GPU2

Switch

(b) Max. connections strategy.

GPU0 GPU1

GPU2

Switch

(c) Min. connections strategy.

Figure 3: Effects of switch-hyperedge policies.

maining constant. However, for small input sizes, the differ-
ence for different number of connections is not significant.
TACCL’s logical topology does not model switches and thus
does not capture the effect of number of connections.

TACCL incorporates the effect of multiple connections
using switch-hyperedges in the synthesizer to control the num-
ber of connections between GPUs and switches. A switch-
hyperedge replaces a switch with a set of direct links in the
logical topology for the entire runtime of an algorithm. The
synthesizer still has the freedom to select which direct links
are imposed. To control the number of direct links for each
switch-hyperedge, TACCL provides three policies for a user:
(1) maximize the number of links, (2) minimize the number
of links, and (3) freely choose any number of links. These
policies are enforced by adding the number of Connections
to the objective function (see Appendix A for details).

Example 3.3 (Sketching for congestion). Figure 3a shows
a physical topology of three GPUs connected by a switch,
where each GPU can communicate with any other GPU.

Figure 3b shows a logical topology with a switch-
hyperedge that TACCL may choose with maximizing number
of connections policy. This is desirable for small data sizes
that result in low likelihood of congestion at the switch with
large number of connections as shown in Figure 4.

In Figure 3c TACCL has minimized the number of connec-
tions, effectively resulting in a Ring topology. This is desir-
able for larger data sizes, as restricting the number of logical
connections limits the congestion in the switch (Figure 4).

3.3 Algorithm Symmetry
Many collective communication algorithms are symmetric
in a variety of ways. For example, ring algorithms follow a

ring symmetry or in hierarchical algorithms, the local phases
inside all machines are symmetric to each other. Inspired by
this, TACCL offers a generic way to enforce algorithms to
be symmetric.

The user may enforce a symmetry by supplying an auto-
morphism of the logical topology and collective, i.e., a permu-
tation of the ranks and chunks that maintains the structure of
the topology and the collective pre- and post-conditions, and a
partition of the ranks such that the automorphism maps each
subset of ranks to some subset of the partition. TACCL will
then restrict synthesis to algorithms with the same symmetry
for all chunk transfers.

Example 3.4. Consider a cluster of two NDv2 systems and
the task of synthesizing an ALLGATHER. A hierarchical sym-
metry may be specified with an automorphism composed of a
the permutation [8, . . . ,15,0, . . . ,7] for both chunks and ranks,
and a partition {{0, . . . ,7},{8, . . . ,15}}. Now if an algorithm
performs a send of chunk 0 from rank 0 to rank 1, then it must
also include a send of chunk 8 from rank 8 to rank 9. However,
sends between GPUs in different NDv2s, e.g., between 0 and
8, are not affected by the symmetry.

Since the internal topologies of NDv2 systems are identical,
enforcing this symmetry is reasonable and helps TACCL
scale to larger distributed topologies. Meanwhile, TACCL
still has the freedom to synthesize the top-level algorithm and
connect the systems to each other as it best can.

4 Physical Topologies of GPU systems

ML engineers use a variety of multi-GPU systems to meet
the scaling challenges posed by growing ML models. Before
users can effectively sketch algorithms for TACCL to synthe-
size, they must understand the physical topology of the target
multi-GPU system. However, the performance characteristics
of their heterogeneous links are sparsely documented and for
some cloud offerings [5] even the topology is not given. To
address this, TACCL includes a physical topology profiler
to measure performance characteristics of links (§4.1) and
to disambiguate the topology of some multi-GPU systems
(§4.2). This section also serves as a concrete introduction into
two target systems: Azure NDv2 and Nvidia DGX-2.

4.1 α-β Cost Model and Link Profiling
In the well-known α-β [21] cost model, α is the latency of a
link and β is the inverse of its bandwidth. The cost of sending
a chunk of size s along a link is α+β · s. TACCL’s synthe-
sizer adopts the α-β cost model for simplicity of encoding and
tractability, but TACCL’s communication sketches expose
features that provide users additional control to avoid exces-
sive concurrency and congestion (see Section 3), which are
not modeled by the α-β cost model. α and β are affected by
both the interconnect hardware and the software stack running

Figure 4: Multi-connection with varying number of GPU neighbors and data volume.

NVLinks

Node 1 Node 2

(a) NVLink connectivity of a NDv2.

NIC

PCIe
switch

(b) PCIe connectivity of a NDv2.

NVSwitches

(c) NVLink connectivity of a DGX-2.

Figure 5: Aspects of physical topologies in various GPU systems.

the collective algorithm (for example software thread fences).
TACCL’s topology profiler measures and infers the α and β

costs of different types of links in a GPU system.

Modern GPU systems, e.g., Azure NDv2 (Figure 5a)
and Nvidia DGX-2 (Figure 5c), have the following types
of interconnects: (1) Peripheral Component Interconnect
Express (PCIe), (2) NVLink [38], (3) Infiniband (IB)
NICs [36]. A PCIe bus connects GPUs to CPUs with lim-
ited shared bandwidth (PCIe Gen3 offers ≈ 13 GBps). PCIe
connections often form a hierarchy with PCIe switches (Fig-
ure 5b). NVLink [38], however, is a GPU to GPU intra-node
connection with dedicated bandwidth. NVLinks are either
directly connected to other GPUs (NDv2 in Figure 5a) or they
are connected to other GPUs via NVSwitches [39] (DGX2 in
Figure 5c). NVSwitches enable fully-connected GPU-GPU
communication through NVLinks. IB is an inter-node inter-
connect which allows GPUs to communicate with GPUs in
other nodes like in the Azure NDv2 (Figure 5b). IB NICs are
usually connected to PCIe switches and GPUs may communi-
cate directly with the NICs through Remote Direct Memory
Access (RDMA) or indirectly via host memory.

The profiler empirically derives the α and β parameters of
different links in the network by performing peer-to-peer data
transfers between GPUs. We send n chunks one after another
on a link and measure the time to transfer. As per the α−β

cost model, the time to transfer is n · (α+β · s). We then send
n chunks all at once on the link and attribute that time to be
α+n ·β · s. Using several measurements of time to transfer,
we solve for α and β. Table 1 shows the α and β values for

Azure NDv2 Nvidia DGX-2
Link α (us) β (us/MB) α (us) β (us/MB)
NVLink 0.7 46 0.7 8
InfiniBand 1.7 106 1.7 106

Table 1: Experimentally obtained α and β costs for Azure
NDv2 and Nvidia DGX-2 nodes.

NDv2 and DGX-2 systems. Using these values, we expect that
for transfers between two Azure NDv2 nodes over InfiniBand
(IB), a sending two 32 KB chunks together as a single 64 KB
chunk will be 17% faster as compared to sending two 32 KB
chunks one after the other. However, chunks sent together can
only be forwarded once the last chunk is received. Based on
the α-β values, TACCL’s synthesizer determines if and when
to send chunks together on a link.

The α-β cost model causes TACCL’s synthesizer to for-
mulate an MILP formulation as opposed to an LP since an
algorithm has to be expressed in terms of discrete chunks.

4.2 Inferring Multi-GPU Topologies

For Azure NDv2 systems the physical topology was not
fully documented: while the NVLink topology (Figure 5a)
is known to match that of Nvidia DGX1, we did not know
how GPUs and the one 12.5 GBps Infiniband NIC were con-
nected with PCIe. PCIe peer-to-peer communication (and thus
GPUDirect RDMA [1]) is not enabled on these machines,
meaning that all communication happens through buffers in

CPU memory over potentially shared PCIe links. Further, vir-
tualization obscures the true PCIe topology (all 8 GPUs and
the NIC appear directly connected to one CPU) and NUMA
node and GPU IDs are not assigned consistently from VM
to VM. This means that, without additional information, soft-
ware cannot avoid contention over shared PCIe links, creating
interference and high variance in performance.

To determine the PCIe topology, TACCL’s profiler sends
bandwidth and latency probes between the two CPUs, be-
tween pairs of GPUs, and between CPUs and the NIC. It
answers the following questions:
• Which CPU is nearest to the NIC? We answer this using

the latency of loopback operations between the NIC and
each CPU.

• Which GPUs share a PCIe switch? We find all pairs of
GPUs that get low bandwidth in a simultaneous copy to
the CPU, indicating contention.

• Which GPUs share a PCIe switch with the NIC? We find
which GPUs get low GPU to CPU bandwidth while the
CPU is doing a loopback with the NIC. The CPU in this
case is the one that is closer to the NIC.

With this profiling information we were able to deduce the
PCIe topology (Figure 5b). Each CPU has two PCIe switches
connecting to two GPUs each, and the Infiniband NIC is
connected to one of these switches. Additionally, by running
the profiler on every new NDv2 VM TACCL is able to select
one of the NVLink topology’s four automorphisms and set
the CUDA_VISIBLE_DEVICES environment variable such that
the NIC is always placed close to GPU 0.

5 TACCL Synthesizer

Once the user has written a communication sketch, they are
ready to call TACCL’s synthesizer. This section describes
the synthesis process TACCL uses, as well as additional
hyperparameters available to the user.

5.1 Problem Formulation

GPUs participating in a communication collective partition
their initial data into C equal chunks where C is a hyperpa-
rameter selected by the user. TACCL’s synthesizer routes and
schedules these chunks. Given a communication sketch and a
collective, the synthesizer decides chunk transfer schedules
across every link in the network, such that each chunk reaches
its destination GPUs as specified by the collective.

TACCL encodes this problem as a mixed integer linear pro-
gram (MILP) with binary and continuous decision variables.
The encoding has a continuous variable called start_time for
every chunk and GPU to indicate when a chunk is available at
a GPU. A binary variable is_sent for all chunk and link pairs
denotes if a chunk is sent over a link. Another continuous
variable send_time indicates when a chunk is sent over a link.

The encoding has bandwidth and correctness constraints to
ensure the correctness of a chunk transfer schedule. The ob-
jective of the MILP is to minimize time which is a continuous
variable indicating the maximum time among all chunks that
must reach their destination GPUs. Details of these variables
and constraints are in Appendix B.

Additionally, TACCL’s synthesizer also decides if it should
merge some chunks and transfer them contiguously as one
large buffer over a link. Sending n chunks contiguously in one
send instruction over a link requires paying only one α latency
cost whereas sending n chunks one after the other requires
paying n×α latency costs. Note that this does not change the
β bandwidth cost. However, sending n chunks separately over
a link enables TACCL to order them such that subsequent
dependent sends from the destination of the link could be
scheduled earlier. TACCL’s synthesizer navigates this trade-
off to minimize the time. TACCL uses this feature only for IB
transfers due to their high α cost and ignores it for NVLinks
due to their lower latency.

MILP problems in general are NP-hard. Luckily, there are
solvers such as Gurobi [20] that apply heuristics to solve
MILPs in a feasible way. However, this requires careful con-
sideration regarding the number of variables and constraints
in the formulation. In TACCL’s formulation, transferring
chunks over a link cannot overlap and an ordering among
them is required. Therefore, potentially a binary decision is
needed for every pair of chunks that may traverse a link. If we
assume there are C chunks for a collective problem, there are
O(C2) such decisions per link. Moreover, as the number of
nodes increase, the number of links increase linearly (larger
topology) and the number of chunks for a collective increases
linearly (ALLGATHER) or even quadratically (ALLTOALL).
This large set of variables and constraints leads to infeasible
solver time and memory requirements.

To solve this problem, we divide the synthesis into three
parts. First, the synthesizer solves an optimization problem
to determine the path used by every chunk without fixing any
ordering among chunks, then it heuristically orders the chunks
over every link, and finally, it solves another optimization
problem to determine chunk contiguity. Complete formal
descriptions of each step are in Appendix B.
Step 1: Routing solves a MILP for finding the path of each
chunk independent of other chunks, allowing chunks sent over
a link to overlap. The objective of this MILP is to minimize
the time, which we constrain to be the maximum of two sets
of variables. (1) for each link, the number of chunks that tra-
verse that link multiplied by the transfer time of a chunk over
that link. (2) for the path of each chunk, the summation of
transfer times of the chunk along every link in the path. Note
that this is only a lower bound on the time since we do not
consider link contention or chunk ordering. TACCL also con-
strains each chunk’s path to be via GPU ranks that are on the
shortest paths from their sources to their destinations using
the links the user decided to include in the logical topology. If

the communication sketch specifies an algorithm symmetry,
TACCL adds the constraints for the symmetric sends. Replac-
ing switches with switch-hyperedges is also applied in this
step. For each switch-hyperedge, a user-provided policy on
the number of unique connections to/form a switch is applied
(see Section 5.2).

TACCL uses Gurobi [20] to solve this MILP and the so-
lution gives every chunk a start_time for each GPU along
its path. Clearly this step solves chunk routing, but only par-
tially solves the chunk scheduling and contiguity problem
and requires follow-up steps (explained next) to account for
ordering the chunks sent over a link as well as minimizing α

costs of sends. However, by using this technique, TACCL’s
synthesizer is able to reduce binary variables needed from
O(C2) to O(C) per link.
Step 2: Heuristic Ordering decides the chunk ordering sent
on each link based on a heuristic. Note that this step is not an
MILP and solely solved by a greedy algorithm. Regardless
of when each chunk becomes available at a GPU, this step as-
signs a total order on the chunks sent over a link l = (src,dst).
This is decided by two heuristic functions. (1) chunks which
need to traverse the longest path from src to their final GPU,
have higher priority. (2) In case there is tie in (1), chunks
which have traversed the shortest path from their initial GPU
to src, have higher priority. This ordering will be used in Step
3 to assign the final schedules.
Step 3: Contiguity and Exact Scheduling solves an MILP
problem to decide which chunks to send contiguously and
gives the exact schedule. The path to be taken by chunks and
their ordering over links have already been determined by the
previous steps which are added as constraints to this MILP.
The start_time and send_time variables are reassigned in this
step by considering both the α and β costs for each transfer.
In this step, the synthesizer allows either sending one chunk
at a time or sending multiple chunks contiguously. This offers
a trade-off between (1) sending the chunks that are available
at the same time for a link according to the ordering in step
2 so that the subsequent sends can be scheduled earlier or
(2) sending the chunks contiguously in one send instruction
to save the latency cost. The objective of this MILP is to
minimize the total time by enforcing all constraints which in
TACCL solved by Gurobi [20]. The solution gives the exact
schedule for each chunk. The details of these constraints and
their formulation are in Appendix B.

5.2 Synthesizer Hyperparameters
TACCL’s synthesizer has some additional parameters that
control the synthesis process. These are provided by the user
to the synthesizer (see Figure 1) through the communication
sketch. Details of each parameter is described in Appendix A.
Buffer Size. TACCL needs the size of input/output buffers
of a collective for the α-β cost model. In ML workloads the
input/output buffer size is a known fixed value.

Chunk Partitioning. The data buffer at each GPU at the start
of the collective can be partitioned into multiple equal chunks.
Each chunk is considered as an atomic scheduling unit by the
synthesizer and different chunks of the same data buffer can
be routed over different links. The semantics of a collective
forces a minimum number of chunks such as ALLTOALL
which needs at least as many chunks as the number of GPU
for each buffer. On one hand, using the minimum number
of chunks is often times ideal for finding latency-optimal
algorithms. On the other hand, providing a higher number of
chunks allows the synthesizer to better utilize the links that
might be idle otherwise which is better for finding bandwidth-
optimal algorithms.

Switch-Hyperedge Policy. TACCL can enforce policies for
the number of connections established over a set of links
in a switch-hyperedge by counting links utilized for data
transfer and setting this count as a part of the MILP objective.
The uc-max policy will maximize the number of connections,
which performs best for small data sizes, while uc-min will
minimize the number of connections, which works well when
the data size is large and congestion is a concern.

5.3 Synthesizing combining collectives

TACCL synthesizes combining collectives (i.e., collectives
that combine chunks like REDUCESCATTER and ALLRE-
DUCE) by utilizing synthesis of non-combining collectives,
similar to the technique used by SCCL [9]. REDUCESCATTER
can be implemented as an “inverse” of ALLGATHER— a send
from a source GPU in ALLGATHER is instead received and
reduced on the source GPU. However, simply inverting the
sends does not work — a GPU may simultaneous send on
different links in an ALLGATHER, but it cannot reduce all re-
ceives together in the inverse case. We thus order the inverse
sends using heuristic ordering followed by contiguity encod-
ing in order to synthesize REDUCESCATTER. ALLREDUCE
is synthesized directly by concatenating REDUCESCATTER
with an ALLGATHER algorithm.

6 Backend

The synthesizer described above generates an abstract algo-
rithm that specifies the order in which the nodes communicate
the various chunks. The goal of the backend is to implement
this abstract algorithm. To do so, we extend NCCL [37] with
an interpreter which we call TACCL runtime. While any
communication algorithm can be trivially implemented using
NCCL’s point-to-point sends and receives, TACCL runtime
enables us to execute the entire algorithm in a single kernel
launch, eliminating multiple launch overheads. In addition,
by reusing NCCL transport mechanisms, TACCL runtime is
able to support all of NCCL’s communication backends such
as IB, Ethernet, NVLink, and PCIe.

6.1 TACCL runtime
The input to TACCL runtime2 is a TACCL-EF program,
which is an XML format for representing collective algo-
rithms. TACCL-EF programs operate on three buffers: input,
output and scratch. For each buffer, the program specifies the
number of chunks it will be sliced into such that all chunks
are equal size. Every step of the algorithm is expressed in
terms of these chunks.

The program is divided into a set of GPU programs made
up of threadblocks. Each threadblock is made up of a se-
ries of steps that are executed sequentially, with each step
specifying an instruction and operands as indices into the
input/output/scratch buffers. The current instruction set in-
cludes sends, receives (with optional reduction), and local
copies. To simplify the implementation of TACCL runtime,
each threadblock can send to and receive from at most one
GPU. Additionally, threadblocks within a GPU can synchro-
nize by indicating that one step depends on another step,
which will cause the interpreter to wait until the dependency
has completed before executing the dependent step.

The TACCL runtime extends NCCL and it is backward
compatible with its API. Therefore, integrating TACCL run-
time into machine learning frameworks such as PyTorch is a
single line change wherein that change swaps the third-party
NCCL library for TACCL runtime. This allows TACCL to
dynamically swap in collective algorithms generated for any
training/inference workload using torch.distributed.

6.2 Lowering to TACCL runtime
To target TACCL-EF, abstract algorithms are lowered to the
executable format. The sets of sends operating on abstract
chunks that comprise the steps of the algorithm are trans-
formed into pairs of send and receive operations operating
on concrete buffer indices. Furthermore, these operations are
placed sequentially into threadblocks and any necessary de-
pendencies recorded between them.

Buffer allocation. Input and output buffers are preallocated
by the user and passed to the collective. Scratch buffers are
allocated by the TACCL runtime per TACCL-EF. Chunks
are indices in the input, output and scratch buffers. For chunks
that are common for both the input and the output buffers (e.g.
as in ALLGATHER) a local copy from input to the output
buffer is performed at the end.

Instruction generation. The operations of the abstract algo-
rithm are split into two instructions for the sender and receiver
GPU, and chunks are translated into buffer references and in-
dices according to the buffer allocation.

Dependency insertion. TACCL transforms a synthesized
algorithm into the asynchronous execution model of TACCL-
EF and dependencies for each buffer index are inserted to

2Link to code: https://github.com/microsoft/msccl

ensure that the data dependencies present in the abstract algo-
rithm are honored.

Threadblock allocation. Instructions are grouped such that
all of them are either sending to at most one GPU and/or re-
ceiving from at most another GPU (possibly different). Order
of the instructions inside a group should follow the order of
the abstract algorithm. TACCL allocates a threadblock for
each group of instructions.

Instances. NCCL and consequently TACCL runtime cannot
saturate the bandwidth of a link in a topology using a single
threadblock. Thus, TACCL generates multiple instances of
the algorithm to maximize the performance. This is done by
subdividing each chunk into n subchunks that follow the same
path as the parent chunk. All groups of instructions and their
threadblocks are duplicated n times and executed in parallel.
§7.2 explores the performance implications of choices of n.

7 Evaluation

We evaluate algorithms obtained with TACCL for ALL-
GATHER, ALLTOALL, and ALLREDUCE collectives on a clus-
ter of 32 GPUs comprised of two Nvidia DGX-2 nodes or up-
to four Azure NDv2 nodes. To compare performances, algo-
rithm bandwidth [33] measurement is used which is calculated
by input buffer size divided by execution time. We synthesize
TACCL algorithms by exploring different communication
sketches and compare them against the popular Nvidia Collec-
tive Communication Library (NCCL) (v.2.8.4-1). This section
analyzes how different communication sketches impact the
performance of the algorithms synthesized by TACCL. In par-
ticular, we perform ablation studies by varying the inter-node
connections in the logical topology, changing synthesizer hy-
perparameters, and changing the number of instances used
when lowering to TACCL-EF. To evaluate how TACCL’s
speedups translate to end-to-end performance, we use algo-
rithms generated by TACCL in two large language models,
Transformer-XL and BERT. Finally, we discuss the synthesis
time required by TACCL to generate these algorithms.

We believe our focus on up to 32 GPUs covers a large
section of important use cases: in an internal cluster of DGX-
2 nodes at Microsoft, the sum of GPUs in jobs of at most 32
was 93.7% of all jobs in the second half of 2021.

7.1 Standalone Experiments
All our communication sketches for DGX-2 and NDv2 use a
hierarchical symmetry like the one in Example 3.4.

7.1.1 ALLGATHER

ALLGATHER on DGX-2. Figure 6(i) shows the algorithm
bandwidth for TACCL’s synthesized algorithms on two DGX-
2 nodes for each output buffer size and plots it against that of

https://github.com/microsoft/msccl

Figure 6: ALLGATHER comparisons of NCCL to TACCL’s
best algorithm at each buffer size.

NCCL. We show the speedup of TACCL’s algorithms over
NCCL on the right Y-axis of the plot. We used two different
sketches for this topology which will be explained next.

A DGX-2 node has 16 V100 GPUs (Figure 5c) where each
pair of GPUs share a PCIe switch with a NIC. This makes
it natural to assign one GPU in a pair to be a receiver and
the other to be a sender by eliminating outgoing and incom-
ing links, respectively, in the logical topology. We design a
sketch (dgx2-sk-1) that uses this logical topology, sets chunk
size to 2MB, uses two chunk partitions for each buffer, and
the sets switch-hyperedge policy to uc-min. With this sketch,
TACCL synthesizes an ALLGATHER algorithm for two DGX-
2 nodes. This algorithm almost saturates the inter-node band-
width during the entire run of the algorithm and provides a
20%−25% speedup over NCCL for large buffer sizes in the
256MB - 1GB range.

Next, we design a sketch (dgx2-sk-2) for smaller sizes.
This sketch allows both GPUs in a pair to utilize the shared
NIC. However, local GPU i on each node is only allowed to
send/receive to/from local GPU i on the other node. Since
the IB is shared, we double the β cost for each IB transfer
to 2 ∗βIB cost. In this sketch, chunk size is set to 1KB and
the switch-hyperedge policy is uc-max. Using this sketch
TACCL synthesizes an algorithm that is 4.9×−6.7× faster
than NCCL in the 1KB - 1MB range, and 10%−3.8× faster
than NCCL in the 2MB - 64MB range. On inspecting this al-
gorithm, we found that TACCL’s synthesized algorithm over-
laps inter-node sends with intra-node all-pair ALLGATHER
of node-local data chunks followed by an intra-node all-pair
ALLGATHER of the node-external chunks received over IB.

Figure 6(i) shows the algorithm bandwidth and the speedup
over NCCL baseline for the best of these two sketches for
each output buffer size.

Figure 7: ALLTOALL comparisons of NCCL to TACCL’s
best algorithm at each buffer size.

ALLGATHER on NDv2. The sketch we used, ndv2-sk-1, uses
the logical topology discussed in Example 3.2, in which a
sender and a receiver GPU were dedicated such that they are
on the same PCIe switch as the NIC. We use a single instance
when lowering algorithms into TACCL-EF for data sizes
1MB and below, and use 8 instances for larger data sizes.
Figure 6(ii) compares the synthesized algorithms to NCCL
on two Azure NDv2 nodes. TACCL’s synthesized algorithms
are 12%− 35% faster than NCCL for buffer sizes of 1KB
- 1MB, and 61%− 3.4× faster than NCCL for sizes larger
than 1MB. These algorithms better saturate the inter-node
bandwidth thanks to the dedicated send/receiver GPUs.

We similarly synthesize ALLGATHER algorithms for four
NDv2 nodes and present the results in Figure 11(i) in Ap-
pendix C. These algorithms are 10%−2.2× faster than NCCL
depending on buffer size.

7.1.2 ALLTOALL

ALLTOALL on DGX-2. We explore the synthesis of ALL-
TOALL algorithms by reusing the dgx2-sk-2 communication
sketch designed in the previous section. Figure 7(i) compares
the resulting algorithm on two DGX-2 nodes. The synthe-
sized algorithm using this sketch performs up-to 15% faster
than NCCL for batch sizes of 2MB and larger. For this sketch,
TACCL’s synthesizer coalesces chunks sent in inter-node
transfer in this algorithm, which reduces the latency of trans-
fers over IB. TACCL also uses a communication sketch with
chunk size set as 1KB and a logical topology where GPUs
have links to all other GPUs connected via the NIC (dgx2-sk-
3). This algorithm is up-to 55% faster than NCCL for small
buffer sizes ranging from 1KB to 16KB.

Figure 8: ALLREDUCE comparisons of NCCL to TACCL’s
best algorithm at each buffer size.

ALLTOALL on NDv2. Figure 7(ii) shows a comparison of
TACCL’s best algorithms for ALLTOALL on two Azure NDv2
nodes against NCCL. We reuse the communication sketch
ndv2-sk-1 and set the chunk size to 1MB. The generated
algorithms run 53%−66% faster than NCCL for buffer sizes
between 16MB - 1GB We explore another sketch (ndv2-sk-2)
with a logical topology in which all GPUs in a node are fully-
connected to all the GPUs in the other node and set chunk
size as 1KB. The algorithm generated by TACCL using this
sketch performs up-to 12% faster than NCCL for buffer sizes
from 1KB to 128KB.

For four NDv2 nodes, TACCL’s synthesized algorithms
uses communication sketch ndv2-sk-1 and they are up-to 46%
faster than NCCL for buffer size greater than 1MB, as shown
in Figure 11(ii) in Appendix C.

7.1.3 ALLREDUCE

ALLREDUCE on DGX-2. As discussed in Section 5.3,
TACCL composes REDUCESCATTER with ALLGATHER to
implement ALLREDUCE and an algorithm for REDUCESCAT-
TER can be constructed by inverting an ALLGATHER algo-
rithm. Figure 8(i) shows the performance of TACCL al-
gorithms on two DGX-2 nodes. The ALLREDUCE synthe-
sized from the ALLGATHER using dgx2-sk-2 is 49%−6.4×
faster than NCCL for buffer sizes ranging from 1KB - 4MB.
TACCL’s generated algorithms by using other communica-
tion sketches like dgx2-sk-1 are 2%−37% faster than NCCL
for buffer sizes ranging from 16MB - 256MB. For buffer
sizes of 512MB and greater, our algorithms are at most 9%
slower than NCCL. This is because NCCL uses the more
optimized fused communication instructions (such as receive-
reduce-copy-send) in its ALLREDUCE communication which

are unavailable in TACCL’s lowering. We leave these such
further optimizations for future work.

ALLREDUCE on NDv2. These algorithms are based on the
ALLGATHER synthesized from the ndv2-sk-1 sketch and use
two versions with 1 and 8 instances. Figure 8(ii) compares
them to NCCL on two NDv2 nodes. The single instance
TACCL algorithm outperforms NCCL’s ALLREDUCE by up
to 28% for buffer sizes of up to 1MB, while the 8 instance
algorithm outperforms NCCL by 28%−2.7× for larger sizes.

On 4 NDv2 nodes, as shown in Figure 11(iii) in Ap-
pendix C, the TACCL algorithms are up to 34% faster than
NCCL for small buffer sizes and 1.9×−2.1× faster than
NCCL for larger buffer sizes.

7.2 Impact of Varying Synthesizer Inputs
In this section, we explore modifications to communication
sketches, as well as the synthesizer hyperparameters and the
instances for the lowering, in order to understand their impact
on the performance of the synthesized algorithms. Our aim is
to demonstrate that the controls offered by TACCL have in-
tuitive effects on the resulting algorithms, which is necessary
for effectively communicating user intuition to TACCL.

We present our analysis for the ALLGATHER collective on
two Nvidia DGX-2 nodes. Unless mentioned otherwise, we
use the following communication sketch as the baseline: same
logical topology as dgx2-sk-1, chunk size set to 1MB, data
partitioning set to 1, and the switch-hyperedge policy set to
uc-max.

Changing logical topology. We create a logical topology
with a dedicated sender and receiver GPU similar to dgx-sk-
1 except we allow a sender to be connected to n different
receivers in the other node. Figure 9a shows the algorithm
bandwidth of ALLGATHER obtained by varying n, the number
of IB connections per GPU, for a fixed chunk size of 1KB,
32KB, and 1MB. For a 1KB chunk size, we found the algo-
rithm that uses 8 IB connections per NIC performs better
than algorithms using fewer connections. As the chunk size
increases to 32KB and 1MB, the optimal number of IB con-
nections per NIC reduces to 4 and 1, respectively. The benefits
of link sharing shrink as the chunk size increases and β-cost
starts dominating over the α-cost.

Changing transfer cost using chunk size. We analyze the
sensitivity of TACCL’s synthesizer to the data size provided
in the communication sketch when its algorithms are applied
on a communication using a different data size. Figure 9b
shows the performance of ALLGATHER algorithm for three
different chunk sizes (1KB, 32KB, and 1MB). Algorithms
generally perform well for a range of data sizes close to what
they have been synthesized for. We recommend trying a small
set of nearby sizes to ensure the best performance.

Changing data partitioning. Figure 9c shows the algorithm
bandwidth of algorithms generated by partitioning data on

(a) Logical topology (b) Chunk size

(c) Data partition (d) Switch-hyperedge strategies (e) Runtime instances

Figure 9: Algorithm bandwidth of ALLGATHER algorithms on DGX-2 by varying different inputs to TACCL

each GPU into a single or two chunks. We set the switch-
hyperedge policy to uc-min and fix number of instances to
8. At a large buffer size of 1GB, the algorithm generated for
two data chunks utilizes bandwidth better as compared to the
algorithm generated for a single data chunk per GPU.

Changing switch-hyperedge policy. Figure 9d shows the
algorithm bandwidth for algorithms generated and evaluated
for 1KB, 32KB, and 1MB chunks. The algorithm bandwidth is
displayed in log-scale. We vary the switch-hyperedge policy
between uc-max and uc-min. For smaller buffer sizes, the
uc-max configuration performs better than uc-min, whereas
for larger buffer sizes, uc-min performs better than uc-max.

Changing number of instances. Figure 9e shows algorithm
bandwidth with instances ranging from 1 to 8. The switch-
hyperedge policy for these algorithms is set to uc-min. In-
creasing the number of instances improves bandwidth utiliza-
tion — multiple threadblocks seem to be needed to keep the
six NVLinks in a V100 busy. However, a larger number of
threadblocks also increases latency, which we suspect is due
to unfavorable scheduling of synchronization related mem-
ory operations onto the NVLinks at the start of each send.
Since latency cost dominates for small buffer sizes, using a
large number of instances only increases the latency cost. As
the buffer size increases, the bandwidth improvements due to
more instances become predominant. Since switch-hyperedge
policy and number of instances have a similar relation with
chunk sizes, we always run uc-max algorithms with a single
instance and uc-min algorithms with 8 instances.

(a) Transformer-XL

(b) BERT

Figure 10: Training throughput using TACCL’s collective
algorithms on Transformer-XL and BERT compared against
NCCL on 2 and 4 Azure NDv2 nodes. Speedup over NCCL
is mentioned on top of the bars.

7.3 End-to-End Training.

We evaluate TACCL on distributed training of two large lan-
guage models, Transformer-XL [4, 13] and BERT [3, 15], on
two (and four) Azure NDv2 nodes, i.e. 16 (and 32) GPUs.
Transformer-XL uses data parallelism and whereas BERT
uses model parallelism. The typical transfer sizes for ALLRE-
DUCE in Transformer-XL is in the 20 - 40MB range, and
for BERT it is about 2MB. Both models communicate with
torch.distributed and, as explained in Section 6, using
TACCL algorithms in them is quite straightforward.

We lower the algorithm synthesized by the synthesizer

AllGather
Sketch Time(s)

dgx2-sk-1 35.8
dgx2-sk-2 11.3
ndv2-sk-1 2.6

AlltoAll
Sketch Time(s)

dgx2-sk-2 92.5
ndv2-sk-1 1809.8
ndv2-sk-2 8.4

AllReduce
Sketch Time(s)

dgx2-sk-1 6.1
dgx2-sk-2 127.8
ndv2-sk-1 0.3

Table 2: Synthesis time for TACCL algorithms for different
collectives using different communication sketches.

into TACCL-EF with 1 and 8 instances, and show the per-
formance of both against NCCL. Figure 10a and Figure 10b
show the training throughput obtained by using TACCL’s
collective algorithms for communication instead of NCCL for
Transformer-XL and BERT respectively for different batch
sizes. TACCL speeds up training of Transformer-XL by
11%− 1.94× on 2 nodes and by 2%− 1.44× on 4 nodes.
The speedup for BERT is 12%− 2.36× on 2 nodes and
7%−1.74× on 4 nodes. Depending on the memory available
per GPU and on how the batch size affects model accuracy,
any of these batch sizes might be chosen for use in practice.

We also use algorithms synthesized by TACCL for ALL-
TOALL and ALLREDUCE collectives for training an inter-
nal Microsoft’s mixture-of-experts workload on two NDv2
nodes. The ALLTOALL and ALLREDUCE sizes required for
this model are ≈ 6MB and ≈ 256MB, respectively. TACCL
improves the end-to-end throughput of this model by 17%.

7.4 Synthesis Time
Table 2 shows the total time it takes for TACCL to synthe-
size algorithms for different collectives using some of the
communication sketches mentioned in Section 7.1. In most
cases synthesis takes from seconds to a few minutes, making
it amenable to a human-in-the-loop approach. When synthe-
sizing an ALLTOALL collective using some communication
sketches, TACCL’s contiguity encoding may take more time
in proving the optimality of a feasible solution. We put a time
limit of 30 minutes on the contiguity encoding in these cases.
The contiguity encoding for sketch ndv2-sk-1 reaches this
timeout, but a feasible solution was already found in 4min
14s. We have also been able to synthesize an ALLGATHER
for 80 GPUs (10 NDv2 nodes) in under 8 minutes.

8 Related Work

The MPI standard provides a set of collective communication
algorithms that enable efficient distributed computations of
interconnected nodes [16]. The HPC community has focused
on the efficient implementation of these MPI collective al-
gorithms [40, 50] and demonstrated how to build optimized
algorithms for specific interconnects, like mesh, hypercube, or
fat-tree [7,8,41]. In contrast to TACCL, these prior works as-
sume homogeneous interconnects and are often only focused
on bandwidth optimality. Hybrid algorithms [7, 10] combine

bandwidth- and latency-optimal algorithms based on input
sizes, but only qfor mesh networks.

NCCL [37] is a GPU implementation of a subset of the
standard MPI collectives, optimized for NVLINK and Infini-
band interconnects. While NCCL uses the topology of GPU
connections and NIC placement along with buffer size to de-
cide between two main types of communication algorithms —
Ring and Tree, it is agnostic to the exact performance profile
of the links, and thus (as we show) is often multiple times
slower than TACCL’s topology aware collectives.

Recent works like SCCL [9], Blink [51], and Plink [29] spe-
cialize algorithms for the underlying topology. SCCL solves
an integer programming encoding based on discrete-time val-
ues in the form of steps and rounds of the algorithm in order to
achieve the pareto-frontier of latency- and bandwidth-optimal
algorithms. SCCL is able to synthesize a novel pareto-optimal
ALLGATHER algorithm for an Nvidia DGX1 node, but its re-
strictive formulation constrains it to only only synthesize
algorithms for single-node topologies. TACCL on the other
hand synthesizes collective algorithms for multi-node topolo-
gies. Blink uses a heuristic spanning-tree packing algorithm
to maximize bandwidth utilization within a node and a hier-
archical approach across. Blink has good performance over
NCCL in the case when NCCL cannot create rings spanning
all GPUs inside a node. TACCL, on the other hand, outper-
forms NCCL when using the entire node of GPUs. Plink
constructs a logical topology based on bandwidth and latency
probes of the physical topology to avoid oversubscribed and
congested links and searches for a reasonable clustering of
nodes for a two-level hierarchical reduction strategy. Plink
builds that hierarchical reduction from known primitives and
does not search over the space of possible algorithms.

There are also hierarchical approaches to implement col-
lectives [12, 29, 42, 51]. For example, Horovod [42] imple-
ments an ALLREDUCE by a local ReduceScatter, a global
ALLREDUCE, and then a local ALLGATHER. These meth-
ods do not search over possible algorithms, but instead pick
from a known set of decompositions. Concurrent to our work,
Ningning et al. [52] use syntax guided synthesis to combine
base MPI primitives among a subset of nodes to hierarchi-
cally generate larger MPI primitives for the entire network. In
contrast, TACCL uses a fine grained approach for algorithm
synthesis while using communication sketches for scalabil-
ity. Combining these two complementary approaches is an
interesting opportunity for future work.

Program sketching [24, 47, 49] is a popular technique that
has been applied to a variety of problems from synthesizing
stencil computations [48], converting hand drawings to im-
ages [17] to social media recommendations [11]. Our work
builds on this body of work to use sketching to effectively
search a large space of communication algorithms.

Lastly, network flow problems have used linear program-
ming to solve routing and scheduling problems for traffic
engineering [22,23,25,44,46] and topology engineering [45].

These techniques, however, cannot be used for generating col-
lective algorithms since communication collectives do not fol-
low all flow properties. Non-source GPUs in a collective can
send the same chunk over different links in parallel while hav-
ing received that chunk only once, which violates an important
flow-conservation property used extensively in network flow
problem literature. TACCL on the other hand makes use of
communication sketches and an encoding relaxation tech-
nique to solve a continuous-time integer linear programming
that faithfully models communication collectives.

9 Conclusion and Future Work

TACCL is a topology and input-size aware collective commu-
nication library for multi-node distributed machine learning
training and inference. TACCL uses user-provided commu-
nication sketches to guide synthesis of collective algorithms.
Using a three-step technique of relaxed routing, heuristic or-
dering, and contiguity and exact scheduling, TACCL gener-
ates efficient collectives for multi-node topologies. We also
make some brief observations about TACCL below:

Scalability. TACCL can synthesize algorithms for large-
scale nodes - we have been able to synthesize an ALLGATHER
algorithm for 8 Azure NDv2 nodes using TACCL in under
5 minutes. As compared to NCCL, this algorithm has up-
to 1.7× higher algorithm bandwidth for different data sizes.
We also evaluated TACCL’s synthesis for 8 Nvidia DGX-2
nodes (128 GPUs) and found a solution in around 11 hours.
While TACCL scales to multi-node topologies, the synthesis
technique is still based on solving an NP-hard problem that
grows exponentially with a quadratic power with scale. As
a future work, we would like to scale TACCL further by
hierarchically composing synthesized algorithms.

Generality across different topologies. Apart from hier-
archical topologies like Nvidia DGX-2 and Azure NDv2,
TACCL can also be applied to non-hierarchical topologies
like a 2D-Torus. We were able to synthesize an ALLGATHER
algorithm for a 2D 6×8 Torus using TACCL. We made use of
the symmetry attribute in communication sketches to explore
synthesis for this topology. However, the amount of explo-
ration we can do with different communication sketches may
be more limited in these cases than for hierarchical topologies.

Exploring communication sketches. Communication
sketches have proven effective in narrowing the search space
of algorithms. Interestingly, different communication sketches
can optimize different ranges of input sizes. Communication
sketches reflect the intuition of developers, and by intelli-
gently exploring the space of communication sketches we can
obtain a range of collective algorithms with different perfor-
mance characteristics. Learning an automated controller for
exploring communication sketches is an interesting direction
for collective algorithm synthesis in the future.

To conclude, TACCL uses the abstraction of communica-
tion sketches and a novel problem formulation to generate
efficient algorithms for collectives like ALLGATHER, ALL-
TOALL, and ALLREDUCE. The algorithms thus generated are
up-to 6.7× faster than the state-of-the-art NCCL and result
in 11%−2.4× faster end-to-end training time.

Acknowledgements

We would like to thank our shepherd, Aurojit Panda, the
anonymous reviewers at NSDI’23, and the members of the
Systems and Storage Lab at UT Austin for their insightful
comments and suggestions. This work was partially sup-
ported by NSF CAREER #1751277, the UT Austin-Portugal
BigHPC project (POCI-01-0247-FEDER-045924), and dona-
tions from VMware.

References

[1] GPUDirect RDMA, 2021.
https://developer.nvidia.com/gpudirect.

[2] Scaling distributed machine learning with In-Network
aggregation. In 18th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 21), pages
785–808. USENIX Association, April 2021.

[3] Megatron-LM. https://github.com/NVIDIA/
Megatron-LM, 2022.

[4] Transformer-XL. https://github.com/NVIDIA/
DeepLearningExamples/tree/master/PyTorch/
LanguageModeling/Transformer-XL, 2022.

[5] Azure ND-series, 2021. https://docs.microsoft.com/en-
us/azure/virtual-machines/nd-series.

[6] Azure NDv2-series, 2021.
https://docs.microsoft.com/en-us/azure/virtual-
machines/ndv2-series.

[7] Michael Barnett, Rick Littlefield, David G Payne, and
Robert van de Geijn. Global combine on mesh archi-
tectures with wormhole routing. In [1993] Proceedings
Seventh International Parallel Processing Symposium,
pages 156–162. IEEE, 1993.

[8] Shahid H Bokhari and Harry Berryman. Complete ex-
change on a circuit switched mesh. In 1992 Proceed-
ings Scalable High Performance Computing Conference,
pages 300–301. IEEE Computer Society, 1992.

[9] Zixian Cai, Zhengyang Liu, Saeed Maleki, Madanlal
Musuvathi, Todd Mytkowicz, Jacob Nelson, and Olli
Saarikivi. Synthesizing optimal collective algorithms.
In Proceedings of the 26th ACM SIGPLAN Symposium

https://github.com/NVIDIA/Megatron-LM
https://github.com/NVIDIA/Megatron-LM
https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/LanguageModeling/Transformer-XL
https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/LanguageModeling/Transformer-XL
https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/LanguageModeling/Transformer-XL

on Principles and Practice of Parallel Programming,
pages 62–75, 2021.

[10] Ernie Chan, Marcel Heimlich, Avi Purkayastha, and
Robert Van De Geijn. Collective communication: the-
ory, practice, and experience. Concurrency and Com-
putation: Practice and Experience, 19(13):1749–1783,
2007.

[11] Alvin Cheung, Armando Solar-Lezama, and Samuel
Madden. Using program synthesis for social recom-
mendations. In Proceedings of the 21st ACM Inter-
national Conference on Information and Knowledge
Management, CIKM ’12, page 1732–1736, New York,
NY, USA, 2012. Association for Computing Machinery.

[12] Minsik Cho, Ulrich Finkler, Mauricio Serrano, David
Kung, and Hillery Hunter. Blueconnect: Decomposing
all-reduce for deep learning on heterogeneous network
hierarchy. IBM Journal of Research and Development,
63(6):1:1–1:11, 2019.

[13] Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell,
Quoc V Le, and Ruslan Salakhutdinov. Transformer-
xl: Attentive language models beyond a fixed-length
context. arXiv preprint arXiv:1901.02860, 2019.

[14] Wei Deng, Junwei Pan, Tian Zhou, Deguang Kong,
Aaron Flores, and Guang Lin. Deeplight: Deep
lightweight feature interactions for accelerating ctr pre-
dictions in ad serving. In Proceedings of the 14th ACM
International Conference on Web Search and Data Min-
ing, WSDM ’21, page 922–930, New York, NY, USA,
2021. Association for Computing Machinery.

[15] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. BERT: pre-training of deep bidirec-
tional transformers for language understanding. CoRR,
abs/1810.04805, 2018.

[16] Jack Dongarra et al. MPI: A message-passing interface
standard version 3.0. High Performance Computing
Center Stuttgart (HLRS), 2(5):32, 2013.

[17] Kevin Ellis, Daniel Ritchie, Armando Solar-Lezama,
and Josh Tenenbaum. Learning to infer graphics pro-
grams from hand-drawn images. Advances in neural
information processing systems, 31, 2018.

[18] William Fedus, Barret Zoph, and Noam Shazeer. Switch
transformers: Scaling to trillion parameter models with
simple and efficient sparsity. CoRR, abs/2101.03961,
2021.

[19] Nadeen Gebara, Manya Ghobadi, and Paolo Costa. In-
network aggregation for shared machine learning clus-
ters. In A. Smola, A. Dimakis, and I. Stoica, editors, Pro-
ceedings of Machine Learning and Systems, volume 3,
pages 829–844, 2021.

[20] Gurobi Optimization, LLC. Gurobi Optimizer Refer-
ence Manual, 2022.

[21] Roger W. Hockney. The communication challenge for
mpp: Intel paragon and meiko cs-2. Parallel Computing,
20(3):389–398, 1994.

[22] Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming
Zhang, Vijay Gill, Mohan Nanduri, and Roger Watten-
hofer. Achieving high utilization with software-driven
wan. SIGCOMM Comput. Commun. Rev., 43(4):15–26,
August 2013.

[23] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon
Ong, Leon Poutievski, Arjun Singh, Subbaiah Venkata,
Jim Wanderer, Junlan Zhou, Min Zhu, Jon Zolla, Urs
Hölzle, Stephen Stuart, and Amin Vahdat. B4: Expe-
rience with a globally-deployed software defined wan.
SIGCOMM Comput. Commun. Rev., 43(4):3–14, August
2013.

[24] Jinseong Jeon, Xiaokang Qiu, Jeffrey S Foster, and Ar-
mando Solar-Lezama. Jsketch: sketching for java. In
Proceedings of the 2015 10th Joint Meeting on Founda-
tions of Software Engineering, pages 934–937, 2015.

[25] Srikanth Kandula, Ishai Menache, Roy Schwartz, and
Spandana Raj Babbula. Calendaring for wide area net-
works. In SIGCOMM’14.

[26] ChonLam Lao, Yanfang Le, Kshiteej Mahajan, Yixi
Chen, Wenfei Wu, Aditya Akella, and Michael Swift.
ATP: In-network aggregation for multi-tenant learning.
In 18th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 21), pages 741–761.
USENIX Association, April 2021.

[27] Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, De-
hao Chen, Orhan Firat, Yanping Huang, Maxim Krikun,
Noam Shazeer, and Zhifeng Chen. Gshard: Scaling gi-
ant models with conditional computation and automatic
sharding. CoRR, abs/2006.16668, 2020.

[28] Liang Luo, Jacob Nelson, Luis Ceze, Amar Phanishayee,
and Arvind Krishnamurthy. Parameter hub: A rack-scale
parameter server for distributed deep neural network
training. In Proceedings of the ACM Symposium on
Cloud Computing, SoCC ’18, page 41–54, New York,
NY, USA, 2018. Association for Computing Machinery.

[29] Liang Luo, Peter West, Jacob Nelson, Arvind Krishna-
murthy, and Luis Ceze. Plink: Discovering and exploit-
ing locality for accelerated distributed training on the
public cloud. In Proceedings of Machine Learning and
Systems 2020, pages 82–97. 2020.

[30] Microsoft SCCL, 2021.
https://github.com/microsoft/sccl.

[31] Using deepspeed and megatron to train megatron-turing
nlg 530b, the world’s largest and most powerful genera-
tive language model. https://www.microsoft.com/en-
us/research/blog/using-deepspeed-and-megatron-to-
train-megatron-turing-nlg-530b-the-worlds-largest-
and-most-powerful-generative-language-model/.
Accessed October 2021.

[32] Dheevatsa Mudigere, Yuchen Hao, Jianyu Huang, Zhi-
hao Jia, Andrew Tulloch, Srinivas Sridharan, Xing Liu,
Mustafa Ozdal, Jade Nie, Jongsoo Park, et al. Software-
hardware co-design for fast and scalable training of deep
learning recommendation models. In Proceedings of
the 49th Annual International Symposium on Computer
Architecture, pages 993–1011, 2022.

[33] NCCL Tests, 2021. https://github.com/NVIDIA/nccl-
tests.

[34] NCCL Tree Algorithm, 2019.
https://developer.nvidia.com/blog/massively-scale-
deep-learning-training-nccl-2-4.

[35] Nvidia DGX Systems, 2021.
https://www.nvidia.com/en-us/data-center/dgx-
systems/.

[36] Nvidia InfiniBand, 2021. https://www.nvidia.com/en-
us/networking/infiniband-adapters/.

[37] Nvidia NCCL, 2021. https://github.com/nvidia/nccl.

[38] Nvidia NVLink and NVSwitch, 2021.
https://www.nvidia.com/en-us/data-center/nvlink/.

[39] NVIDIA NVSWITCH The World’s
Highest-Bandwidth On-Node Switch , 2021.
https://images.nvidia.com/content/pdf/nvswitch-
technical-overview.pdf.

[40] Jelena Pješivac-Grbović, Thara Angskun, George
Bosilca, Graham E Fagg, Edgar Gabriel, and Jack J Don-
garra. Performance analysis of mpi collective operations.
Cluster Computing, 10(2):127–143, 2007.

[41] David S Scott. Efficient all-to-all communication
patterns in hypercube and mesh topologies. In The
Sixth Distributed Memory Computing Conference, 1991.
Proceedings, pages 398–399. IEEE Computer Society,
1991.

[42] Alexander Sergeev and Mike Del Balso. Horovod: fast
and easy distributed deep learning in tensorflow, 2018.

[43] Mohammad Shoeybi, Mostofa Patwary, Raul Puri,
Patrick LeGresley, Jared Casper, and Bryan Catanzaro.
Megatron-lm: Training multi-billion parameter language
models using model parallelism. CoRR, abs/1909.08053,
2019.

[44] Rachee Singh, Sharad Agarwal, Matt Calder, and
Paramvir Bahl. Cost-effective cloud edge traffic en-
gineering with cascara. In 18th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
21), pages 201–216. USENIX Association, April 2021.

[45] Rachee Singh, Nikolaj Bjorner, Sharon Shoham, Yawei
Yin, John Arnold, and Jamie Gaudette. Cost-Effective
Capacity Provisioning in Wide Area Networks with
Shoofly. In Proceedings of the 2021 ACM SIGCOMM
2021 Conference, SIGCOMM ’21, page 534–546, New
York, NY, USA, 2021. Association for Computing Ma-
chinery.

[46] Rachee Singh, Manya Ghobadi, Klaus-Tycho Foerster,
Mark Filer, and Phillipa Gill. Radwan: Rate adaptive
wide area network. In Proceedings of the 2018 Confer-
ence of the ACM Special Interest Group on Data Com-
munication, SIGCOMM ’18, page 547–560, New York,
NY, USA, 2018. Association for Computing Machinery.

[47] Armando Solar-Lezama. Program Synthesis by Sketch-
ing. PhD thesis, USA, 2008. AAI3353225.

[48] Armando Solar-Lezama, Gilad Arnold, Liviu Tancau,
Rastislav Bodik, Vijay Saraswat, and Sanjit Seshia.
Sketching stencils. In Proceedings of the 28th ACM
SIGPLAN Conference on Programming Language De-
sign and Implementation, PLDI ’07, page 167–178, New
York, NY, USA, 2007. Association for Computing Ma-
chinery.

[49] Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik,
Sanjit Seshia, and Vijay Saraswat. Combinatorial sketch-
ing for finite programs. In Proceedings of the 12th
International Conference on Architectural Support for
Programming Languages and Operating Systems, AS-
PLOS XII, page 404–415, New York, NY, USA, 2006.
Association for Computing Machinery.

[50] Rajeev Thakur, Rolf Rabenseifner, and William Gropp.
Optimization of collective communication operations in
mpich. The International Journal of High Performance
Computing Applications, 19(1):49–66, 2005.

[51] Guanhua Wang, Shivaram Venkataraman, Amar Phan-
ishayee, Nikhil Devanur, Jorgen Thelin, and Ion Stoica.
Blink: Fast and generic collectives for distributed ml. In
I. Dhillon, D. Papailiopoulos, and V. Sze, editors, Pro-
ceedings of Machine Learning and Systems, volume 2,
pages 172–186, 2020.

[52] Ningning Xie, Tamara Norman, Dominik Grewe, and
Dimitrios Vytiniotis. Synthesizing optimal parallelism
placement and reduction strategies on hierarchical sys-
tems for deep learning. CoRR, abs/2110.10548, 2021.

[53] Zhen Zhang, Chaokun Chang, Haibin Lin, Yida Wang,
Raman Arora, and Xin Jin. Is network the bottleneck of
distributed training? In Proceedings of the Workshop on
Network Meets AI & ML, pages 8–13, 2020.

Appendix

A Communication Sketch Input

TACCL adopts a user-in-the-loop approach where algorithm
designers provide a communication sketch to guide communi-
cation algorithm synthesis by TACCL. TACCL’s synthesizer
takes in a profiled topology provided by TACCL profiler
along with a communication sketch provided by a user-in-
the-loop. A communication sketch comprises of a logical
topology, switch-hyperedge strategy, symmetry information,
input size, and other hyperparameters. Listing 1 gives an ex-
ample of how users can provide a communication sketch input
to the TACCL synthesizer. Here, we show an example of the
communication sketch dgx2-sk-1 used in the evaluation to
synthesize an ALLGATHER algorithm for 2 NVIDIA DGX-2
nodes (each node has 16 GPUs and 8 NICs, every two GPUs
in the node share a NIC).

The sketch annotates the NVSwitch in each node and sets
a uc-min switch-hyperedge strategy. Further, the inter-node
sketch fixes the sender and receiver GPUs in a node for inter-
node data transfers. In our example, the odd-numbered GPUs
sharing a NIC are chosen as senders and the even-numbered
GPUs are chosen as receivers for inter-node communication.
The user also annotates how the inter-node relay GPUs would
split the inter-node bandwidth using a beta_split attribute.
Since only a single GPU per NIC is chosen in our example to
perform inter-node send and similarly receive, the bandwidth
is not split. Optionally, the user can also map chunks to sender
GPUs so that only mapped GPUs are used for inter-node trans-
fers for the chunk. The chunk_to_relay_map attribute defines
the parameters for the mapping function. The communication
sketch also allows users to play with rotational symmetry for
data routing. Given a symmetry offset and a group size, a
chunk transfer over a link is set to be equivalent to a rota-
tionally symmetric chunk over a rotationally symmetric link.
In our example of the symmetry_offset attribute, using [2,16]
fixes an intra-node symmetry with an offset of two, and using
[16,32] fixes a symmetric data transfer pattern between the
two DGX-2 nodes. Hyperparameters like input data partition-
ing and input size can also be provided via the communication
sketch.

Listing 1: Example sketch dgx2-sk-1 for ALLGATHER

{
// sketch for intra-node policy
"intranode_sketch": {

"strategy": "switch",

"switches":
[[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]],

"switch_hyperedge_strategy": ["uc-min"]
},

// sketch for communication policy between any
two nodes

"internode_sketch": {
"strategy": "relay",
"internode_conn": {"1" : [0], "3" : [2], "5"

: [4], "7" : [6], "9" : [8], "11" :
[10], "13" : [12], "15" : [14]}, // "i":
[j1, j2] implies GPU i in a node will
only send data to GPU j1 and j2 of
another node

"beta_split": {"1": 1, "3": 1, "5": 1, "7" :
1, "9" : 1, "11" : 1, "13" : 1, "15" :
1}, // "i": n implies inter-node sends
from a GPU i of a node will use 1/n-th
of the inter-node bandwidth

"chunk_to_relay_map": [2,1] // maps chunk to
a sender relay GPU. [r1,r2] means chunk
c will be send to another node via GPU
(rp//r1)*r1 + r2, where rp is the
precondition GPU for chunk c

},

// enforces rotational symmetry.
// [(o,g), ..]: o is the rotational offset and

g is the group size for the rotational
symmetry.

// : eg. send(c,src,r) == send((c + o)%g, (src
+ o)%g, (r + o)%g)

"symmetry_offsets": [[2, 16], [16, 32]],

"hyperparameters": {
"input_chunkup": 2, // Data at each GPU is

partitioned into 2 chunks that can be
independently routed

"input_size": "1M"
}

}

B TACCL Synthesizer in Detail

As explained in Section 5, TACCL’s synthesizer has rout-
ing, heuristic ordering, and contiguity and exact scheduling
stages. We provide a detailed description of each of these
stages in this section. We first formally introduce some terms
that we will use later. Let C denote the set of chunks that
are required to be routed in the algorithm for collective coll.
Let R denote the set of GPU ranks involved in coll. Let
coll.precondition and coll.postcondition denote the precon-
dition and post-condition of the collective respectively.The
tuple (c,r) ∈ coll.precondition,c ∈ C ,r ∈ R , if chunk c is
present at rank r at the start of the collective. Similarly, the

(c,r) ∈ coll.postcondition if chunk c has to be present at rank
r at the end of the collective. Further, let L denote the set of
links, such that (r1,r2) ∈ L ,r1 ∈ R ,r2 ∈ R if there exists
a link from rank r1 to rank r2 in the logical topology deter-
mined by the topology and communication sketch. Let S send

r
denote the set of switched destinations for rank r, such that
dst ∈ S send

r if link (r,dst) is a part of a switch-hyperedge. Sim-
ilarly, S recv

r denotes the set of switched sources for rank r, such
that src ∈ S recv

r if link (src,r) is a part of a switch-hyperedge.
α(r1,r2), β(r1,r2) are the alpha and beta costs respectively
of the link (r1,r2) ∈ L . The term lat(r1,r2) is the sum of
α(r1,r2) and β(r1,r2) cost of the link, which denotes the
total transfer cost of a single chunk over link (r1,r2). Table 3
lists the variables that the TACCL’s synthesizer solves for.
We will describe each variable in detail in this section.

B.1 Routing
The main aim of the routing stage is to give us the path
that every chunk takes in the collective. Our objective is to
minimize the time (denoted by continuous variable time) it
takes to reach the post-condition of the collective.

Minimize time (1)

The time taken for the collective algorithm is the latest time
at which a chunk becomes available on a rank that is in the
post-condition of the collective. We use a continuous variable
start[c,r] to denote the time that chunk c becomes available
on rank r, and end up with the following constraints for time

time≥ start[c,r] ∀(c,r) ∈ coll.postcondition (2)

For chunks on ranks that belong to the collective’s precon-
dition, we set the start time to zero.

start[c,r] = 0 ∀(c,r) ∈ coll.precondition (3)

We also add correctness constraints in our formulation for
routing - chunks are sent from a GPU rank only after they
have been received on that rank. We introduce a continuous
variable send[c,src,r] to denote the time of sending chunk c
from rank src to rank r and add the following constraint to
our formulation:

send[c,src,r]≥ start[c,src] ∀c ∈ C ∀(src,r) ∈ L (4)

We use a binary variable is_sent[c,src,r] to indicate if
chunk c is sent over the link (src,r) in our algorithm. We
note that the routing stage does not strictly respect bandwidth
constraints of any link - the generated solution may send two
chunks simultaneously over a link at the time cost of one
chunk. The chunk start time on a rank will be determined
only by the chunk send time on the source, independent of
other chunk transfers on the link (eq. 5). LHS→RHS in the

equation signifies an indicator constraint, i.e., if LHS is 1,
RHS will hold.

is_sent[c,src,r]→start[c,r] = send[c,src,r]+ lat(src,r)

∀c ∈ C ∀(src,r) ∈ L
(5)

Instead of bandwidth constraints, this encoding uses relaxed
bandwidth constraints. They are expressed by aggregating
the link transfer time of all chunks sent over a link and using
it to to lower bound the total time of the algorithm (eq. 6). For
switched connections, the total time is lower bounded by the
sum of link transfer times of all chunks sent over all switched
outgoing links from a source, and also by the sum of link
transfer times for chunks received from all incoming links to
a destination (eq. 7 and eq. 8).

time≥ ∑
c∈C

(lat(src,r)∗ is_sent[c,src,r]) ∀(src,r) ∈ L

(6)

time≥ ∑
c∈C

∑
dst∈S send

r

(lat(r,dst)∗ is_sent[c,r,dst]) ∀r ∈ Ssend

(7)

time≥ ∑
c∈C

∑
src∈S recv

r

(lat(src,r)∗ is_sent[c,src,r]) ∀r ∈ Srecv

(8)

Based on the communication sketch, we also add con-
straints for uc-max and uc-min strategies for switch-
hyperedges to maximize and minimize the number of links
utilized in a switch respectively. We introduce a new binary
variable is_util[src,r] for links (src,r) that are a part of a
switch-hyperedge. This variable is 1 if any chunk is sent over
link (src,r), and 0 otherwise.(eq. 9 and eq. 10). According to
the switch-hyperedge strategy, we add this variable, weighted
with a small constant γ, to the objective function (eq. 11). γ is
negative for uc-max and positive for uc-min.

is_util[src,r]>= is_sent[c,src,r] ∀c ∈ C∀(src,r) ∈ L
(9)

is_util[src,r]<= ∑
∀c∈C

is_sent[c,src,r] ∀(src,r) ∈ L (10)

Minimize time+ γ× (∑
(src,r):switched links

is_util[src,r])

(11)

We also add symmetry constraints according to the symme-
try offsets provided by user in the communication sketch. For
a chunk c and link (src,r), we identify a rotationally symmet-
ric chunk ĉ and link (ˆsrc, r̂) and add the following constraints:

start[c,r] = start[ĉ, r̂] (12)
send[c,src,r] = send[ĉ, ˆsrc, r̂] (13)

is_sent[c,src,r] = is_sent[ĉ, ˆsrc, r̂] (14)

MILP Variables Explanation
Routing
time time spent in the collective algorithm
start[c,r] time at which chunk c becomes available at GPU r
send[c,src,r] time at which chunk c is sent from GPU src to GPU r
is_sent[c,src,r] indicates if chunk c is sent from GPU src to GPU r
is_util[src,r] indicates if any chunk is sent from GPU src to GPU r

Contiguity
is_together[c,o,r] indicates if chunks c and o are sent to GPU r together

from the same source, thus sharing the bandwidth and
reducing the latency cost of transfer

Table 3: Variables used in TACCL’s MILP formulation. Vari-
ables with prefix is_ are binary variables and others are con-
tinuous variables.

Further, for chunks that start on one node and have a final
destination on another node, we add inter-node transfer con-
straints which specify that at least one inter-node link will be
used to transfer that chunk.

∑
(r1,r2)∈L :r1∈node1,r2∈node2

is_sent[c,r1,r2]≥ 1 (15)

B.2 Ordering Heuristics
We start the heuristic ordering by determining the paths each
chunk takes using the solution of the path encoding. We then
consider the first link in every path as a candidate for schedul-
ing a chunk transfer. Using heuristics like chunk-with-shortest-
path-until-now-first and chunk-with-longest-path-from-now-
first, we select a path (and thus a chunk) which should be
scheduled in this round. We keep a running estimate of link
time, which is the earliest time at which a chunk can be sched-
uled over the link. We also keep a running estimate of chunk
time, which is the earliest time at which the next link transfer
can be scheduled for a chunk. At the start, the link time for ev-
ery link is 0 and the chunk time for every chunk is 0. When a
path is chosen in the first round, the chunk associated with the
path is scheduled to traverse the first link in the path. The link
time of that link increases by link latency and chunk time of
that chunk increases by link latency. The link candidate from
the selected path is also updated to be the next link in the path.
For the next rounds, we decide which path’s candidate link to
schedule next using the tracked link and chunk times along
with the scheduling heuristics. This keeps going until we have
scheduled a data transfer over all the links in all the paths.
We find that the best heuristics differ for architectures with
NVLinks and those with NVSwitches, in terms of whether to
start selecting links to schedule in the same order as the paths
or in the opposite order of the paths. The heuristic ordering
has the following three outputs:

• chunk_order(r1,r2), an ordered list of chunks trans-
ferred along each link (r1,r2). If chunk c1 is present

before chunk c2 in chunk_order(r1,r2), it denotes that
c1 is scheduled to be sent before c2 over link (r1,r2).

• switch_send_order(r), an ordering on the chunks sent
from a switch source r to any of the switch destinations
dsts. If (c1,dst1) is present before tuple (c2,dst2) in
switch_send_order(r), it means that a send of c1 over
link (r,dst1) should be scheduled before a send of chunk
c2 over link (r,dst2).

• switch_recv_order(r), an ordering on the chunks re-
ceived on a switch destination r from any of the
switch sources srcs. If (c1,src1) is present before tu-
ple (c2,src2) in switch_recv_order(r), it means that a
receive of c1 over link (src1,r) should be scheduled be-
fore a receive of chunk c2 over link (src2,r).

B.3 Contiguity and Exact Scheduling
Finally, we describe the formulation for the contiguity and
exact scheduling stage. Given the link and switch ordering
from the heuristic ordering stage, the aim of this stage is
to find the sweet spot in the trade-off between lower link
latency by sending multiple data chunks contiguously as a
big data chunk and reduced pipelining benefits due to the big
data-chunk transfer. We provide the main set of constraints
in our formulation below, leaving out other less important
constraints.

Our objective is still to minimize the time of the collective
and constraints eq. 1-eq. 4 must still hold in this formulation.
We add a new binary variable is_together(c1,c2,r) for all
chunks c1 and c2 that are sent over the same link to rank r.
If is_together(c1,c2,r) is 1, chunks c1 and c2 are sent as a
single data-chunk over a link to rank r.

is_together[c,o,r]→send[c,src,r] = send[o,src,r]

∀c,o ∈ chunk_order(src,r) ∀(src,r) ∈ L
(16)

The transfer time of a data chunk c along a link (src,r) will
be determined by all other data chunks that it has to travel
together with:

lat[c,src,r] =α(src,r)+β(src,r)∗
(∑

o∈chunk_order(src,r)
is_together[c,o,r])

∀c ∈ chunk_order(src,r) ∀(src,r) ∈ L
(17)

start[c,r] =send[c,src,r]+ lat[c,src,r]

∀c ∈ chunk_order(src,r) ∀(src,r) ∈ (L)
(18)

We also add strict bandwidth constraints for this formu-
lation, allowing only one data chunk per link transfer time

if the data chunks are not sent contiguously over the link.
Let pos(c,src,r) determine the position of chunk c in the
chunk_order(src,r), then

¬is_together[c,o,r]→send[o,src,r]≥send[c,src,r]

+lat[c,src,r] ∀c ∈ chunk_order(src,r)

∀o ∈ chunk_order(src,r)

if pos(o,src,r)≥ pos(c,src,r) ∀(src,r) ∈ L

(19)

Similarly, we add bandwidth constraints for switch, allow-
ing a source to send data to only one switched destination at
a time, and a receiver to receive data from only one switched
sender at a time. Let sw− pos− send(c,r,dst) determine the
position of tuple (c,dst) in the switch_send_order(r), and
let sw− pos− recv(c,src,r) determine the position of tuple
(c,src) in the switch_recv_order(r), then,

send[o,r,dsto]≥send[c,r,dstc]+ lat[c,r,dstc]

∀(c,dstc) ∈ switch_send_order(r)
∀(o,dsto) ∈ switch_send_order(r)

if sw-pos-send(o,r,dsto)≥ sw-pos-send(c,r,dstc)

∀r ∈ S send

(20)

send[o,srco,r]≥send[c,srcc,r]+ lat[c,srcc,r]

∀(c,srcc) ∈ switch_recv_order(r)
∀(o,srco) ∈ switch_recv_order(r)

if sw-pos-recv(o,srco,r)≥ sw-pos-recv(c,srcc,r)

∀r ∈ S recv

(21)

C Standalone Experiments on Four Azure
NDv2 Nodes

Figure 11 shows additional algorithm bandwidth and the
speedup over NCCL graphs of TACCL for ALLGATHER,
ALLTOALL, and ALLREDUCE on 4-node NDv2 cluster. We
synthesize all collectives using the ndv2-sk-1 communication
sketch (see Section 7.1 for details), and lower them using 1
or 8 instances. We plot the best of the two algorithms over
different buffer sizes.

TACCL’s ALLGATHER algorithms are 10%−2.2× faster
than NCCL across all buffer sizes. For ALLTOALL, the ndv2-
sk-1 sketch is most effective for large buffer sizes, and helps
generate algorithms that are up-to 46% faster than NCCL for
buffer size greater than 1MB. TACCL ALLREDUCE algo-
rithms are up-to 34% faster than NCCL for small buffer sizes
and 1.9×−2.1× faster than NCCL for larger buffer sizes.

Figure 11: Algorithm bandwidth of TACCL algorithms compared
against NCCL (left Y-axis) and their speedup over NCCL (right
Y-axis) for ALLGATHER, ALLTOALL, and ALLREDUCE collectives
on four NDv2 nodes.

	Introduction
	Background and Motivation
	Communication Sketches
	Logical Topology
	Switch-Hyperedges
	Algorithm Symmetry

	Physical Topologies of GPU systems
	- Cost Model and Link Profiling
	Inferring Multi-GPU Topologies

	TACCL Synthesizer
	Problem Formulation
	Synthesizer Hyperparameters
	Synthesizing combining collectives

	Backend
	TACCL runtime
	Lowering to TACCL runtime

	Evaluation
	Standalone Experiments
	Allgather
	Alltoall
	Allreduce

	Impact of Varying Synthesizer Inputs
	End-to-End Training.
	Synthesis Time

	Related Work
	Conclusion and Future Work
	Communication Sketch Input
	TACCL Synthesizer in Detail
	Routing
	Ordering Heuristics
	Contiguity and Exact Scheduling

	Standalone Experiments on Four Azure NDv2 Nodes

